A nonlinear model of inverted pendulum that exhibit unbounded single well φ6 potential is described. The complete equation for one-dimensional wind-induced sway is derived. The harmonic balance method along with Melnikov theory are used to seek the effects of aerodynamic drag forces on the amplitude of vibration, on the structure failure, and on the appearance of horseshoes chaos. Numerical simulations have been performed to confirm analytical investigation.

References

References
1.
Flesh
,
T. K.
, and
Grant
,
R. H.
, 1991,
“The Translation of Turbulent Wind Energy to Individual Corn Plant Motion During Senescence,”
Boundary-Layer Meterol.
,
55
, pp.
161
177
.
2.
Doare
,
O.
,
Moulia
,
B.
, and
Delangre
,
E.
, 2004,
“Effect of Plant Interaction on Wind-Induced Crop Motion,”
J. Biomech. Eng.
126
, pp.
146
151
.
3.
Loram
,
I. D.
,
Kelly
,
S. M.
, and
Lakie
,
M.
, 2001,
“Human Balancing of an Inverted Pendulum: Is Sway Size Controlled by Ankle Impedance,”
J. Physiol. (London)
,
532
, pp.
879
891
.
4.
Kuo
,
A. D.
,
Donelan
,
M. J.
, and
Ruina
,
A.
, 2005,
“Energetic Consequences of Walking Like an Inverted Pendulum: Step to Step Transitions,”
Exerc. Sport Sci. Rev.
,
33
, pp.
84
87
.
5.
Grasser
,
F.
,
D’Arrigo
,
A.
, and
Colombi
,
S.
, 2002,
“Joe: A Mobile, Inverted Pendulum,”
IEEE Trans. Ind. Electron. Control Instrum.
,
49
, pp.
107
114.
6.
Kim
,
Y.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
, 2006,
“Dynamics Analysis of a Nonholonic Two-Wheeled Inverted Pendulum Robot,”
J. Intell. Robot. Syst.
,
44
, pp.
25
46
.
7.
Awrejcewicz
,
J.
,
Supel
,
B.
,
Lamarque
,
C. H.
,
Kudra
,
G.
,
Wasilewski
,
G.
, and
Olejnik
,
P.
, 2008,
“Numerical and Experimental Study of Regular and Chaotic Motion of Triple Physical Pendulum,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
18
, pp.
2883
2915
.
8.
Saulson
,
P. R.
,
Stebbins
,
R. T.
,
Dumont
,
F. D.
, and
Mock
,
S. E.
, 1994,
“The Inverted Pendulum as a Probe of Inelasticity,”
Rev. Sci. Instrum.
,
65
, pp.
182
191
.
9.
Smith
,
H. J. T.
, and
Blackburn
,
J. A.
, 1992,
“Experimental Study of an Inverted Pendulum,”
Am. J. Phys.
,
60
, pp.
909
911
.
10.
Mogo
,
J. B.
, and
Woafo
,
P.
, 2007,
“Dynamics of a Nonlinear Electromechanical Device With a Pendulum Arm,”
ASME J. Comput. Nonlinear Dyn.
,
2
, pp.
374
379
.
11.
Awrejcewicz
,
J.
, 1989,
Bifurcation and Chaos in Simple Dynamical Systems
,
World Scientific
,
Singapore
.
12.
Tchoukuegno
,
R.
,
Nana Nbendjo
,
B. R.
, and
Woafo
,
P.
, 2003, “
Linear Feedback and Parametric Controls of Vibration and Chaotic Escape in a ϕ6 Potential
,”
Int. J. Nonlin. Mech.
,
38
, pp.
531
541
.
13.
Tchoukuegno
,
R.
,
Nana Nbendjo
,
B. R.
, and
Woafo
,
P.
, 2003, “
Resonant Oscillation and Fractals Basin Boundaries of a Particle in a ϕ6 Potential
,”
Physica A
,
304
, pp.
362
378
.
14.
Finnigan
,
J. J.
, and
Mulhearn
,
P. J.
, 1978,
“A Simple Mathematical Model of Airflow in Waving Plants Canopy,”
Boundary-Layer Meteorol.
,
12
, pp.
415
431
.
15.
Kerzenmacher
,
T.
, and
Gardiner
,
B.
, 1998,
“A Mathematical Model to Describe the Dynamic Response of a Spruce Tree to the Wind,”
Trees, Structure and Function
,
12
(263), pp.
385
394
.
16.
Virgin
,
N. L.
,
Plaut
,
R. H.
, and
Cheng
,
C. C.
, 1992.
“Prediction of Escape From a Potential Well Under Harmonic Excitation,”
Int. J. Nonlin. Mech.
,
27
, pp.
357
365
.
17.
Nana Nbendjo
,
B. R.
,
Salissou
,
Y.
, and
Woafo
,
P.
, 2005,
“Active Control With Delay of Catastrophic Motion and Horseshoes Chaos in a Single Well Duffing Qscillator,”
Chaos, Solitons Fractals
23
, pp.
809
816
.
18.
Melnikov
,
V. K.
, 1963,
“On the Stability of the Center for Some Periodic Pertubations,”
Trans. Mosc. Math. Soc.
,
12
, pp.
1
57
.
19.
Ghost
,
D.
,
Ray
,
A.
, and
Chowdhury
,
R.
, 2010,
“Heteroclinic Orbit, Forced Lorentz System, and Chaos,”
ASME J. Comput. Nonlinear Dyn.
,
5
, pp.
11008
110015
.
20.
Awrejcewicz
,
J.
, and
Holiske
,
M.
,
Smooth and Nonsmooth High Dimensional Chaos and the Melnikov Type Methods
(
World Scientific
,
Singapore
, 2007).
21.
Dettman
,
C. P.
,
Frankel
,
N. E.
, and
Cornish
,
N. J.
, 1995,
“Chaos and Fractals Around Black Holes,”
Fractals
,
3
, pp.
161
181
.
You do not currently have access to this content.