This paper examines the limitations of using B-spline representation as an analysis tool by comparing its geometry with the nonlinear finite element absolute nodal coordinate formulation (ANCF) geometry. It is shown that while both B-spline and ANCF geometries can be used to model nonstructural discontinuities using linear connectivity conditions, there are fundamental differences between B-spline and ANCF geometries. First, while B-spline geometry can always be converted to ANCF geometry, the converse is not true; that is, ANCF geometry cannot always be converted to B-spline geometry. Second, because of the rigid structure of the B-spline recurrence formula, there are restrictions on the order of the parameters and basis functions used in the polynomial interpolation; this in turn can lead to models that have significantly larger number of degrees of freedom as compared to those obtained using ANCF geometry. Third, in addition to the known fact that B-spline does not allow for straightforward modeling of T-junctions, B-spline representation cannot be used in a straightforward manner to model structural discontinuities. It is shown in this investigation that ANCF geometric description can be used to develop new spatial chain models governed by linear connectivity conditions which can be applied at a preprocessing stage allowing for an efficient elimination of the dependent variables. The modes of the deformations at the definition points of the joints that allow for rigid body rotations between ANCF finite elements are discussed. The use of the linear connectivity conditions with ANCF spatial finite elements leads to a constant inertia matrix and zero Coriolis and centrifugal forces. The fully parameterized structural ANCF finite elements used in this study allow for the deformation of the cross section and capture the coupling between this deformation and the stretch and bending. A new chain model that employs different degrees of continuity for different coordinates at the joint definition points is developed in this investigation. In the case of cubic polynomial approximation, C1 continuity conditions are used for the coordinate line along the joint axis; while C0 continuity conditions are used for the other coordinate lines. This allows for having arbitrary large rigid body rotation about the axis of the joint that connects two flexible links. Numerical examples are presented in order to demonstrate the use of the formulations developed in this paper.

References

References
1.
Piegl
,
L.
, and
Tiller
,
W.
, 1997,
The NURBS Book
,
2nd ed.
,
Springer
,
New York
.
2.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
, 2009, “
On The Integration of Computer Aided Design and Analysis Using The Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Sys. Dyn.
,
22
, pp.
181
197
.
3.
Lan
,
P.
, and
Shabana
,
A. A.
, 2010, “
Integration of B-spline Geometry and ANCF Finite Element Analysis
,” Nonlinear Dyn.
4.
Abbas
,
L. K.
,
Rui
,
X.
, and
Hammoudi
,
Z. S.
, 2010, “
Plate/Shell Element of Variable Thickness Based on the Absolute Nodal Coordinate Formulation
,”
IMechE J. Multibody Dyn.
,
224
, Part K, pp.
127
141
.
5.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Sys. Dyn.
,
10
(
1
), pp.
17
43
.
6.
Dufva
,
K.
,
Kerkkanen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
, 2007, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite Element Method
,”
Nonlinear Dyn.
,
48
, pp.
449
466
.
7.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2005, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
280
, pp.
719
738
.
8.
Garcia-Vallejo
,
D.
,
Escalona
,
J. L.
,
Mayo
,
J.
, and
Dominguez
,
J.
, 2003, “
Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates
,”
Nonlinear Dyn.
,
34
, pp.
75
94
.
9.
Garcia-Vallejo
,
D.
,
Mayo
,
J.
, and
Escalona
,
J. L.
, 2008, “
Three-Dimensional Formulation of Rigid-Flexible Multibody Systems with Flexible Beam Elements
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
1
28
.
10.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
, 2006, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
, pp.
239
256
.
11.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, 2010, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), p.
011010
.
12.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
, 2003, “
Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
342
350
.
13.
Tian
,
Q.
,
Chen
,
L. P.
,
Zhang
,
Y. Q.
, and
Yang
,
J. Z.
, 2009, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation”
,
ASME J. Comput. Nonlinear Dyn.
,
4
, p.
021009
.
14.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Yang
,
J.
, 2010, “
Simulation of Planar Flexible Multibody Systems with Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
, pp.
489
511
.
15.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Application
,”
ASME J. Mech. Des.
,
123
, pp.
614
621
.
16.
Yoo
,
W. S.
,
Lee
,
J. H.
,
Park
,
S. J.
,
Sohn
,
J. H.
,
Pogorelov
,
D.
, and
Dimitrochenko
,
O.
, 2004, “
Large Deflection Analysis of a Thin Plate: Computer Simulation and Experiment
,”
Multibody Sys. Dyn.
,
11
, pp.
185
208
.
17.
Hamed
,
A. M.
,
Shabana
,
A. A.
,
Jayakumar
,
P.
, and
Letherwood
,
M. D.
, 2011 “
Non-Structural Geometric Discontinuities in Finite Element/Multibody System Analysis
,” Nonlinear Dyn.
18.
Roberson
,
R. E.
, and
Schwertassek
,
R.
, 1988,
Dynamics of Multibody Systems
,
Springer
,
Berlin
.
19.
Schiehlen
,
W. O.
, 1997, “
Multibody System Dynamics: Roots and Perspectives”
,
Multibody Sys. Dyn.
,
1
, pp.
149
188
.
20.
Shabana
,
A. A.
, 2011, “
General Method for Modeling Slope Discontinuities and T-Sections using ANCF Gradient Deficient Finite Elements
,”
ASME J. Comput. Nonlinear Dyn.
,
6
, p.
024502
.
21.
Omar
,
M. A.
, and
Shabana
,
A. A.
2001, “
A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation
,”
J. Sound Vib.
,
243
(
3
), pp.
565
576
.
22.
Shabana
,
A. A.
, 2008,
Computational Continuum Mechanics
,
Cambridge University Press
,
Cambridge
.
23.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
, 2002, “
Analysis of Belt-Drive Mechanics Using a Creep-Rate-Dependent Friction Law
,”
ASME J. Appl. Mech.
,
69
, pp.
763
771
.
24.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
You do not currently have access to this content.