Regular and chaotic dynamics of the flexible Timoshenko-type beams is studied using both the standard Fourier (FFT) and the continuous wavelet transform methods. The governing equations of motion for geometrically nonlinear Timoshenko-type beams are reduced to a system of ODEs using both finite element method (FEM) and finite difference method (FDM) to ensure the reliability of numerical results. Scenarios of transition from regular to chaotic vibrations and beam dynamical stability loss are analyzed. Advantages and disadvantages of various wavelet functions are discussed. Application of continuous wavelet transform to the investigation of transitional and chaotic phenomena in nonlinear dynamics is illustrated and discussed.
Issue Section:
Research Papers
References
1.
Awrejcewicz
, J.
, and Krysko
, V. A.
, 2003, Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells
, Springer
, Berlin
.2.
Awrejcewicz
, J.
, Krysko
, V. A.
, and Vakakis
, A. F.
, 2004, Nonlinear Dynamics of Continuous Elastic Systems
, Springer
, Berlin
.3.
Awrejcewicz
, J.
, Krysko
, V. A.
, and Krysko
, A. V.
, 2007, Thermo-Dynamics of Plates and Shells
, Springer
, Berlin
.4.
Awrejcewicz
, J.
, and Krysko
, V. A.
, 2008, Chaos in Structural Mechanics
, Springer
, Berlin
.5.
Krysko
, V. A.
, and Shchekaturova
, T. V.
, 2004, “Chaotic Vibration of Cone Shells
,” Mechanics of Solids
, 5
, pp. 124
–133
, in Russian.6.
Desyatova
, A. S.
, Zhigalov
, M. V.
, Krysko
, V. A.
, and Saltykova
, O. A.
, 2008, “Dissipative Dynamics of Geometrically Nonlinear Bernoulli-Euler Beams
,” Mech. Solids
, 6
, pp. 948
–956
, in Russian.7.
Grossmann
, A.
, and Morlet
, S.
, 1984, “Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape
,” SIAM J. Math. Anal.
, 15
(4
), pp. 723
–736
.8.
Debnath
, L.
, 2002, Wavelet Transforms and Their Applications
, Birkhäuser
, Boston
.9.
Newland
, D.E.
, 1993, Introduction to Random Vibrations, Spectral and Wavelet Analysis
, Longman
, New York
.10.
Chui
, C. K.
, 1997, Wavelets: A Mathematical Tool for Signal Analysis
, SIAM
, Philadelphia
.11.
Daubechies
, I.
, 1991, Ten Lectures on Wavelets
, SIAM
, Philadelphia
.12.
Torrence
, C.
, and Compo
, G. P
, 1998, “A Practical Guide to Wavelet Analysis
,” Bull. Am. Meteorol. Soc.
, 79
, pp. 61
–78
.13.
Lepik
, Ü.
, 2007, “Application of the Haar Wavelet Transform to Solving Integral and Differential Equations
,” Proceedings of the Estonian Academy of Science, Physics, and Mathematics
, 56
(1
), pp. 28
–46
.14.
Lepik
, Ü.
, 2001, “Application of Wavelet Transform Techniques to Vibration Studies
,” Proceedings of the Estonian Academy of Science, Physics, and Mathematics
, 50
, pp. 155
–168
.15.
Nouira
, H.
, Foltete
, E.
, Alt Brik
, B.
, Hirsinger
, L.
, and Ballandras
, S.
, 2008, “Experimental Characterization and Modeling of Microsliding on a Small Cantilever Quartz Beam
,” J. Sound Vib.
, 317
(1–2
), pp. 30
–49
.16.
Zhong
, S.
, and Oyadiji
, S. O.
, 2008, “Identification of Cracks in Beams With Auxiliary Mass Spatial Probing by Stationary Wavelet Transform
,” ASME J. Vib. Acoust.
, 130
, p. 041001
.17.
Ji
, Y. F.
, and Chang
, C. C.
, 2008, “Nontarget Stereo Vision Technique for Spatiotemporal Response Measurement of Line-like Structures
,” J. Eng., Mech.
, 134
(6
), pp. 466
–474
.18.
Yang
, J. M.
, Hwang
, C. N.
, and Yang
, B. L.
, 2008, “Crack Identification in Beams and Plates by Discrete Wavelet Transform Method
,” Journal of Ship Mechanics
, 12
(3
), pp. 464
–472
.19.
Fedorova
, A. N.
, and Zeitlin
, M. G.
, 1998, “Wavelets in Optimization and Approximations
,” Math. Comput. Simul.
, 46
(5–6
), pp. 527
–534
.20.
Awrejcewicz
, J.
, and Krysko
, A. V.
, 2003, “Wavelet-Based Analysis of Parametric Vibrations of Flexible Plates
,” Int. Appl Mech.
, 39
(9
), pp. 997
–1028
.21.
Benaroya
, H.
, and Nagurka
, M.
, 2009, Mechanical Vibration: Analysis, Uncertainties, and Control
, 3rd ed., CRC
, Boston
.22.
Reddy
, J. N.
, 2006, Theory and Analysis of Elastic Plates and Shells
, 2nd ed., CRC
, Portland, OR
.23.
Han
, S. M.
, Benaroya
, H.
, and Wei
, T.
, 1999, “Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,” J. Sound Vib.
, 225
(5
), pp. 935
–988
.24.
Reissner
, E.
, 1995, “On Transverse Vibration of Thin Shallow Shells
,” Quarterly of Applied Mathematics
, 13
(2
), pp. 169
–170
.25.
Kantz
, H.
, and Schreiber
, T.
, 1997, Nonlinear Time Series Analysis
, Cambridge University Press
, Cambridge
.26.
Wolf
, A.
, Swift
, J. B.
, Swinney
, H. L.
, and Vastano
, J. A.
, 1985, “Determining Lyapunov Exponents From a Time Series
,” Physica D
, 16
, pp. 285
–317
.27.
Rosenstein
, M. T.
, Collins
, J. J.
, and De Luca
, C. J.
, 1993, “A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,” Physica D
, 65
, pp. 117
–134
.28.
Kantz
, H.
, 1994, “A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series
,” Phys. Lett. A
, 185
, pp. 77
–87
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.