Regular and chaotic dynamics of the flexible Timoshenko-type beams is studied using both the standard Fourier (FFT) and the continuous wavelet transform methods. The governing equations of motion for geometrically nonlinear Timoshenko-type beams are reduced to a system of ODEs using both finite element method (FEM) and finite difference method (FDM) to ensure the reliability of numerical results. Scenarios of transition from regular to chaotic vibrations and beam dynamical stability loss are analyzed. Advantages and disadvantages of various wavelet functions are discussed. Application of continuous wavelet transform to the investigation of transitional and chaotic phenomena in nonlinear dynamics is illustrated and discussed.

References

1.
Awrejcewicz
,
J.
, and
Krysko
,
V. A.
, 2003,
Nonclassical Thermoelastic Problems in Nonlinear Dynamics of Shells
,
Springer
,
Berlin
.
2.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Vakakis
,
A. F.
, 2004,
Nonlinear Dynamics of Continuous Elastic Systems
,
Springer
,
Berlin
.
3.
Awrejcewicz
,
J.
,
Krysko
,
V. A.
, and
Krysko
,
A. V.
, 2007,
Thermo-Dynamics of Plates and Shells
,
Springer
,
Berlin
.
4.
Awrejcewicz
,
J.
, and
Krysko
,
V. A.
, 2008,
Chaos in Structural Mechanics
,
Springer
,
Berlin
.
5.
Krysko
,
V. A.
, and
Shchekaturova
,
T. V.
, 2004, “
Chaotic Vibration of Cone Shells
,”
Mechanics of Solids
,
5
, pp.
124
133
, in Russian.
6.
Desyatova
,
A. S.
,
Zhigalov
,
M. V.
,
Krysko
,
V. A.
, and
Saltykova
,
O. A.
, 2008, “
Dissipative Dynamics of Geometrically Nonlinear Bernoulli-Euler Beams
,”
Mech. Solids
,
6
, pp.
948
956
, in Russian.
7.
Grossmann
,
A.
, and
Morlet
,
S.
, 1984, “
Decomposition of Hardy Functions Into Square Integrable Wavelets of Constant Shape
,”
SIAM J. Math. Anal.
,
15
(
4
), pp.
723
736
.
8.
Debnath
,
L.
, 2002,
Wavelet Transforms and Their Applications
,
Birkhäuser
,
Boston
.
9.
Newland
,
D.E.
, 1993,
Introduction to Random Vibrations, Spectral and Wavelet Analysis
,
Longman
,
New York
.
10.
Chui
,
C. K.
, 1997,
Wavelets: A Mathematical Tool for Signal Analysis
,
SIAM
,
Philadelphia
.
11.
Daubechies
,
I.
, 1991,
Ten Lectures on Wavelets
,
SIAM
,
Philadelphia
.
12.
Torrence
,
C.
, and
Compo
,
G. P
, 1998, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
, pp.
61
78
.
13.
Lepik
,
Ü.
, 2007, “
Application of the Haar Wavelet Transform to Solving Integral and Differential Equations
,”
Proceedings of the Estonian Academy of Science, Physics, and Mathematics
,
56
(
1
), pp.
28
46
.
14.
Lepik
,
Ü.
, 2001, “
Application of Wavelet Transform Techniques to Vibration Studies
,”
Proceedings of the Estonian Academy of Science, Physics, and Mathematics
,
50
, pp.
155
168
.
15.
Nouira
,
H.
,
Foltete
,
E.
,
Alt Brik
,
B.
,
Hirsinger
,
L.
, and
Ballandras
,
S.
, 2008, “
Experimental Characterization and Modeling of Microsliding on a Small Cantilever Quartz Beam
,”
J. Sound Vib.
,
317
(
1–2
), pp.
30
49
.
16.
Zhong
,
S.
, and
Oyadiji
,
S. O.
, 2008, “
Identification of Cracks in Beams With Auxiliary Mass Spatial Probing by Stationary Wavelet Transform
,”
ASME J. Vib. Acoust.
,
130
, p.
041001
.
17.
Ji
,
Y. F.
, and
Chang
,
C. C.
, 2008, “
Nontarget Stereo Vision Technique for Spatiotemporal Response Measurement of Line-like Structures
,”
J. Eng., Mech.
,
134
(
6
), pp.
466
474
.
18.
Yang
,
J. M.
,
Hwang
,
C. N.
, and
Yang
,
B. L.
, 2008, “
Crack Identification in Beams and Plates by Discrete Wavelet Transform Method
,”
Journal of Ship Mechanics
,
12
(
3
), pp.
464
472
.
19.
Fedorova
,
A. N.
, and
Zeitlin
,
M. G.
, 1998, “
Wavelets in Optimization and Approximations
,”
Math. Comput. Simul.
,
46
(
5–6
), pp.
527
534
.
20.
Awrejcewicz
,
J.
, and
Krysko
,
A. V.
, 2003, “
Wavelet-Based Analysis of Parametric Vibrations of Flexible Plates
,”
Int. Appl Mech.
,
39
(
9
), pp.
997
1028
.
21.
Benaroya
,
H.
, and
Nagurka
,
M.
, 2009,
Mechanical Vibration: Analysis, Uncertainties, and Control
, 3rd ed.,
CRC
,
Boston
.
22.
Reddy
,
J. N.
, 2006,
Theory and Analysis of Elastic Plates and Shells
, 2nd ed.,
CRC
,
Portland, OR
.
23.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
, 1999, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.
24.
Reissner
,
E.
, 1995, “
On Transverse Vibration of Thin Shallow Shells
,”
Quarterly of Applied Mathematics
,
13
(
2
), pp.
169
170
.
25.
Kantz
,
H.
, and
Schreiber
,
T.
, 1997,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge
.
26.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
, pp.
285
317
.
27.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
De Luca
,
C. J.
, 1993, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
,
65
, pp.
117
134
.
28.
Kantz
,
H.
, 1994, “
A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series
,”
Phys. Lett. A
,
185
, pp.
77
87
.
You do not currently have access to this content.