The nonlinear behavior and stability under static and dynamic loads of an inverted spatial pendulum with rotational springs in two perpendicular planes, called Augusti’s model, is analyzed in this paper. This 2DOF lumped-parameter system is an archetypal model of modal interaction in stability theory representing a large class of structural problems. When the system displays coincident buckling loads, several post-buckling paths emerge from the bifurcation point (critical load) along the fundamental path. This leads to a complex potential energy surface. Herein, we aim to investigate the influence of nonlinear modal interactions on the dynamic behavior of Augusti’s model. Coupled/uncoupled dynamic responses, bifurcations, escape from the pre-buckling potential well, stability, and space-time-varying displacements; attractor-manifold-basin phase portraits are numerically evaluated with the aim of enlightening the system complex response. The investigation of basins evolution due to variation of system parameters leads to the determination of erosion profiles and integrity measures which enlighten the loss of safety of the structure due to penetration of eroding fractal tongues into the safe basin.

1.
Bazant
,
Z. P.
, and
Cedolin
,
L.
, 1991,
Stability of Structures
,
Oxford
,
Oxford
.
2.
Brush
,
D. O.
, and
Almroth
,
B. O.
, 1975,
Buckling of Bars, Plates and Shells
,
McGraw-Hill
,
New York
.
3.
El Naschie
,
M. S.
, 1990,
Stress, Stability and Chaos in Structural Engineering: An Energy Approach
,
McGraw Hill
,
London
.
4.
Pignataro
,
M.
,
Rizzi
,
N.
, and
Luongo
,
A.
, 1991,
Stability, Bifurcation and Postcritical Behaviour of Elastic Structures
,
Elsevier Science
,
New York
.
5.
Thompson
,
J. M. T.
, and
Hunt
,
G. W.
, 1984,
Elastic Instability Phenomena
,
Wiley
,
London
.
6.
Lansbury
,
A. N.
,
Thompson
,
J. M. T.
, and
Basin
,
H. B.
, 1992, “
Basin Erosion in the Twin-Well Duffing Oscillator: two Distinct Bifurcation Scenarios
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
2
, pp.
505
532
.
7.
Rega
,
G.
, and
Lenci
,
S.
, 2005, “
Identifying, Evaluating and Controlling Dynamical Integrity Measures in Non-Linear Mechanical Oscillators
,”
Nonlinear Anal.
,
63
, pp.
902
914
.
8.
Soliman
,
M. S.
, and
Gonçalves
,
P. B.
, 2003, “
Chaotic Behavior Resulting in Transient and Steady State Instabilities of Pressure-Loaded Shallow Spherical Shells
,”
J. Sound Vib.
0022-460X,
259
, pp.
497
512
.
9.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
, 1989, “
Integrity Measures Quantifying the Erosion of Smooth and Fractal Basins of Attraction
,”
J. Sound Vib.
0022-460X,
135
, pp.
453
475
.
10.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 1987,
Nonlinear Dynamics and Chaos
,
Wiley
,
Chichester
.
11.
Hunt
,
G. W.
,
Reay
,
N. A.
, and
Yoshimura
,
T.
, 1979, “
Local Diffeomorphisms in the Bifurcational Manifestations of the Umbilic Catastrophes
,”
Proc. R. Soc. London, Ser. A
0950-1207,
369
, pp.
47
65
.
12.
Del Prado
,
Z. J. G. N.
, 1999, “
Vibrações Não Lineares e Instabilidade Dinâmica de Estruturas Sujeitas a Interação Modal, Internal Report
,” PUC-Rio, Rio de Janeiro, Brazil.
13.
Raftoyiannis
,
I. G.
, and
Kounadis
,
A. N.
, 2000, “
Dynamic Buckling of 2-DOF Systems With Mode Interaction Under Step Loading
,”
Int. J. Non-Linear Mech.
0020-7462,
35
, pp.
531
542
.
14.
Hansen
,
J. S.
, 1977, “
Some Two-Mode Buckling Problems and Their Relation to Catastrophe Theory
,”
AIAA J.
0001-1452,
15
(
11
), pp.
1638
.
15.
Sophianopoulos
,
D. S.
, 2007, “
Bifurcations and Catastrophes of a Two-Degrees-of-Freedom Nonlinear Model Simulation of the Buckling and Postbuckling of Rectangular Plates
,”
J. Franklin Inst.
0016-0032,
344
, pp.
463
488
.
16.
Thompson
,
J. M. T.
, and
Gaspar
,
Z.
, 1977, “
A Buckling Model for the Set of Umbilic Catastrophes
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
82
, pp.
497
.
17.
Brubak
,
L.
, and
Hellesland
,
J.
, 2007, “
Semi-Analytical Post buckling and Strength Analysis of Arbitrarily Stiffened Plates in Local and Global Bending
,”
Thin-Walled Struct.
0263-8231,
45
(
6
), pp.
620
633
.
18.
Chen
,
H.
, and
Yu
,
W.
, 2006, “
Postbuckling and Mode Jumping Analysis of Composite Laminates Using an Asymptotically Correct, Geometrically Non-Linear Theory
,”
Int. J. Non-Linear Mech.
0020-7462,
41
(
10
), pp.
1143
1160
.
19.
Dinis
,
P. B.
,
Camotim
,
D.
, and
Silvestre
,
N.
, 2007, “
FEM-Based Analysis of the Local-Plate/Distortional Mode Interaction in Cold-Formed Steel Lipped Channel Columns
,”
Comput. Struct.
0045-7949,
85
(
19–20
), pp.
1461
1474
.
20.
Kiymaz
,
G.
, 2005, “
FE Based Mode Interaction Analysis of Thin-Walled Steel Box Columns Under Axial Compression
,”
Thin-Walled Struct.
0263-8231,
43
(
7
), pp.
1051
1070
.
21.
Kolakowski
,
Z.
, 2007, “
Some Aspects of Dynamic Interactive Buckling of Composite Columns
,”
Thin-Walled Struct.
0263-8231,
45
, pp.
865
871
.
22.
Quinn
,
D. D.
,
Wilber
,
J. P.
,
Clemons
,
C. B.
,
Young
,
G. W.
, and
Buldum
,
A.
, 2007, “
Buckling Instabilities in Coupled Nano-Layers
,”
Int. J. Non-Linear Mech.
0020-7462,
42
(
4
), pp.
681
689
.
23.
Teng
,
J. G.
, and
Hong
,
T.
, 2006, “
Postbuckling Analysis of Elastic Shells of Revolution Considering Mode Switching and Interaction
,”
Int. J. Solids Struct.
0020-7683,
43
(
3–4
), pp.
551
568
.
24.
Tvergaard
,
V.
, 1973, “
Imperfection-Sensitivity of a Wide Integrally Stiffened Panel Under Compression
,”
Int. J. Solids Struct.
0020-7683,
9
, pp.
177
192
.
25.
Van der Heijden
,
A. M. A.
, 2008,
W. T. Koiter’s Elastic Stability of Solids and Structures
,
Cambridge University Press
,
Cambridge, UK
.
26.
Gonçalves
,
P. B.
, and
Del Prado
,
Z. J. G. N.
, 2005, “
Low-Dimensional Galerkin Models for Nonlinear Vibration and Instability Analysis of Cylindrical Shells
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
129
145
.
27.
Aston
,
P. J.
, 1999, “
Bifurcations of the Horizontally Forced Spherical Pendulum
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
170
, pp.
343
353
.
28.
Lenci
,
S.
, and
Rega
,
G.
, 2004, “
Global Optimal Control and System-Dependent Solutions in the Hardening Helmholtz–Duffing Oscillator
,”
Chaos, Solitons Fractals
0960-0779,
21
(
5
), pp.
1031
1046
.
29.
Lenci
,
S.
, and
Rega
,
G.
, 2003, “
Optimal Numerical Control of Single-Well to Cross-Well Chaos Transition in Mechanical Systems
,”
Chaos, Solitons Fractals
0960-0779,
15
(
1
), pp.
173
186
.
30.
Lenci
,
S.
, and
Rega
,
G.
, 2000, “
Numerical Control of Impact Dynamics of Inverted Pendulum Through Optimal Feedback Strategies
,”
J. Sound Vib.
0022-460X,
236
(
3
), pp.
505
527
.
31.
Shiriaev
,
A. S.
,
Ludvigsen
,
H.
, and
Egeland
,
O.
, 2004, “
Swinging Up the Spherical Pendulum via Stabilization of Its First Integrals
,”
Automatica
0005-1098,
40
, pp.
73
85
.
32.
Orlando
,
D.
, 2010, “
Nonlinear Dynamics, Instability and Control of Structural Systems With Modal Interaction
,” Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, Brazil, in Portuguese.
33.
Allgower
,
E.
, and
Georg
,
K.
, 1990,
Numerical Continuation Methods
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.