Redundant constraints in multibody system (MBS) models, reflected by a singular constraint Jacobian, impair the efficient dynamics simulation. In particular, kinematic loop constraints are often found to be permanently redundant. This problem is commonly attacked numerically by decomposing the constraint Jacobian either at every simulation time step or beforehand in an admissible assembly (assuming that the redundancy is permanent). This paper presents a method for the elimination of permanently redundant loop closure constraints, which, instead of numerically decomposing the constraints, relies on the geometric characterization of kinematic loops comprising lower kinematic pairs. In particular, the invariant vector space of velocities of a kinematic loop is taken into account, which can be determined as the sum of Lie (screw) algebras of two subchains of a kinematic loop. The actual reduction is achieved by restricting the constraints to this space. The presented method does not interfere with the actual generation of constraints but can be considered as a preprocessing step of MBS models. It is numerically robust and only uses a geometrically exact model. The method is able to completely eliminate redundant loop constraints for “nonparadoxical” single-loop mechanisms and applies conservatively to multiloop MBS. The presented method only requires information (vectors, matrices) that is readily available in any MBS simulation package. The only numerical operations involved are cross products and a singular value decomposition of a low dimensional matrix.

1.
Bayo
,
E.
, and
Avello
,
A.
, 1994, “
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
5
(
2
), pp.
209
231
.
2.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
(
1–2
), pp.
113
130
.
3.
Blajer
,
W.
, 2002, “
Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy
,”
Multibody Syst. Dyn.
1384-5640,
8
(
2
), pp.
141
159
.
4.
Cuadrado
,
J.
,
Cardenal
,
J.
, and
Bayo
,
E.
, 1997, “
Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
(
3
), pp.
259
280
.
5.
Aghili
,
F.
, 2005, “
A Unified Approach for Inverse and Direct Dynamics of Constrained Multibody Systems Based on Linear Projection Operator: Applications to Control and Simulation
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
5
), pp.
834
849
.
6.
Arabyan
,
A.
, and
Wu
,
F.
, 1998, “
An Improved Formulation for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
1
), pp.
49
69
.
7.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
, 1986, “
QR Decomposition for State Space Representation of Constraint Mechanical Dynamical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
183
188
.
8.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
, 1985, “
Application of SVD for Analysis of Mechanical Systems Dynamics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
82
87
.
9.
Meijaard
,
J. P.
, 1993, “
Applications of the Singular Value Decomposition in Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
103
, pp.
161
173
.
10.
Neto
,
A. M.
, and
Ambrosio
,
J.
, 2003, “
Stabilization Methods for the Integration of DAE in the Presence of Redundant Constraints
,”
Multibody Syst. Dyn.
1384-5640,
19
(
1
), pp.
311
352
.
11.
Singh
,
R. P.
, and
Likings
,
P. W.
, 1985, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
943
948
.
12.
Wojtyra
,
M.
, 2009, “
Joint Reactions in Rigid Body Mechanisms With Dependent Constraints
,”
Mech. Mach. Theory
0094-114X,
44
(
12
), pp.
2265
2278
.
13.
Kalaba
,
R. E.
, and
Udwadia
,
F. E.
, 1993, “
Equations of Motion for Nonholonomic, Constrained Dynamical Systems via Gauss’s Principle
,”
ASME J. Appl. Mech.
0021-8936,
60
(
3
), pp.
662
668
.
14.
Voronets
,
P. V.
, 1901, “
Equations of Motion for Nonholonomic Systems
,”
Mat. Sb.
0368-8666,
22
(
4
), pp.
681
697
.
15.
Laulusa
,
A.
, and
Bauchau
,
O. A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011004
.
16.
Papastavridis
,
J. G.
, 2002,
Analytical Mechanics
,
Oxford University Press
,
New York
.
17.
Müller
,
A.
, 2006, “
A Conservative Elimination Procedure for Permanently Redundant Closure Constraints in MBS-Models With Relative Coordinates
,”
Multibody Syst. Dyn.
1384-5640,
16
(
4
), pp.
309
330
.
18.
Arponen
,
T.
, 2001, “
Regularization of Constraint Singularities in Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
6
(
4
), pp.
355
375
.
19.
Srivatsan
,
R.
,
Hoeltzel
,
D. A.
, and
Das
,
A.
, 1993, “
An Analytical Method for the Identification of Redundant Constraints in Multiple-Loop Spatial Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
115
(
2
), pp.
324
332
.
20.
Brockett
,
R. W.
,
Stokes
,
A.
, and
Park
,
F. C.
, 1993, “
Geometrical Formulation of the Dynamical Equations Describing Kinematic Chains
,”
IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
, pp.
637
642
.
21.
Müller
,
A.
, and
Maisser
,
P.
, 2003, “
Lie Group Formulation of Kinematics and Dynamics of Constrained MBS and Its Application to Analytical Mechanics
,”
Multibody Syst. Dyn.
1384-5640,
9
, pp.
311
352
.
22.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1993,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
23.
Eberhard
,
P.
, and
Schiehlen
,
W.
, 2006, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
3
12
.
24.
Wittenburg
,
J.
, 2008,
Dynamics of Multibody Systems
,
2nd ed.
,
Springer
,
New York
.
25.
Featherstone
,
R.
, 1987,
Robot Dynamics Algorithms
,
Kluwer
,
Dordrecht
.
26.
Fijany
,
A.
,
Sharf
,
I.
, and
D’Eleuterio
,
G. M. T.
, 1995, “
Parallel O(1og N) Algorithms for Computation of Manipulator Forward Dynamics
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
3
), pp.
389
400
.
27.
Rodriguez
,
G.
,
Jain
,
A.
, and
Kreutz-Delgado
,
K.
, 1992, “
Spatial Operator Algebra for Multibody System Dynamics
,”
J. Astronaut. Sci.
0021-9142,
40
, pp.
27
50
.
28.
Hervé
,
J. M.
, 1978, “
Analyse Structurelle des Mechanismes par Groupe des Deplacements
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
29.
Martı́nez
,
J. M. R.
, and
Ravani
,
B.
, 2003, “
On Mobility Analysis of Linkages Using Group Theory
,”
J. Mech. Des.
1050-0472,
125
(
1
), pp.
70
80
.
30.
Mcphee
,
J. J.
, 1997, “
A Unified Graph-Theoretic Approach to Formulating Multibody Dynamics Equations in Absolute or Joint Coordinates
,”
J. Franklin Inst.
0016-0032,
334
(
3
), pp.
431
445
.
31.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
, 2002, “
Constraint Singularities as C-Space Singularities
,”
Advances in Robot Kinematics, Theory and Application
,
Kluwer
,
Dordrecht
, pp.
183
192
.
32.
Nikravesh
,
P. E.
, 1984, “
Some Methods for Dynamic Analysis of Constrained Mechanical Systems: A Survey
,”
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E. J.
Haug
, ed.,
Springer
,
Berlin
, pp.
351
367
.
33.
García de Jalón
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems-The Real-Time Challenge
,
Springer
,
New York
.
You do not currently have access to this content.