We study the feasibility of employing subharmonic resonance of order one-half to create a bandpass filter. A filter made up of two clamped-clamped microbeam resonators coupled by a weak beam is employed as a test design. We discretize the distributed-parameter system using the Galerkin procedure to obtain a reduced-order model composed of two nonlinear coupled Ordinary Differentiation Equations (ODEs). It accounts for geometric and electric nonlinearities as well as the coupling between these two fields. Using the method of multiple scales, we determine four first-order nonlinear ODEs describing the amplitudes and phases of the modes. We use these equations to determine closed-form expressions for the static and dynamic deflections of the structure. The basis functions in the discretization are the linear undamped global mode shapes of the unactuated structure. We found that it is impractical to use the proposed filter structure for subharmonic resonance-based filtering since it cannot produce a single-valued response for small excitation amplitudes. On the other hand, it is feasible to use cascaded uncoupled resonators to build a bandpass filter by operating one in the softening domain and the other in the hardening domain.

1.
Bannon
,
F. D.
,
Clark
,
J. R.
, and
Nguyen
,
C. T.-C.
, 2000, “
High-Q HF Microelectromechanical Filters
,”
IEEE J. Solid-State Circuits
0018-9200,
35
(
4
), pp.
512
526
.
2.
Li
,
S. -S.
,
Demirci
,
M. U.
,
Lin
,
Y. -W.
,
Ren
,
Z.
, and
Nguyen
,
C. T.-C.
, 2004, “
Bridged Micromechanical Filters
,”
Proceedings of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50 Anniversary Conference
, Montreal, Canada, Aug. 24–27, pp.
280
286
.
3.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
, and
Baskaran
,
R.
, 2005, “
Tunable Microelectromechanical Filters That Exploit Parametric Resonance
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
423
430
.
4.
Nayfeh
,
A. H.
,
Mook
,
D. T.
, and
Marshall
,
L. R.
, 1973, “
Nonlinear Coupling of Pitch and Roll Modes in Ship Motions
,”
J. Hydrodynam.
1001-6058,
7
, pp.
145
152
.
5.
Vyas
,
A.
,
Bajaj
,
A. K.
,
Raman
,
A.
, and
Peroulis
,
D.
, 2006, “
Nonlinear Micromechanical Filters Based on Internal Resonance Phenomenon
,”
Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF ’06)
, Digest of Papers, San Diego, CA, Jan. 18–20, pp.
35
38
.
6.
Vyas
,
A.
,
Peroulis
,
D.
, and
Bajaj
,
A. K.
, 2008, “
Dynamics of a Nonlinear Microresonator Based on Resonantly Interacting Flexuraltorsion Modes
,”
Nonlinear Dyn.
0924-090X,
54
, pp.
31
52
.
7.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
, 1990, “
Nonlinear Motions of a Beam-Mass Structure
,”
Nonlinear Dyn.
0924-090X,
1
, pp.
39
61
.
8.
Vyas
,
A.
, and
Bajaj
,
A. K.
, 2005, “
Microresonators Based on 1:2 Internal Resonance
,”
ASME
Paper No. IMECE2005-81701.
9.
Bannon
,
F. D.
,
Clark
,
J. R.
, and
Nguyen
,
C. T.-C.
, 1996, “
High Frequency Microelectromechanical IF Filter
,”
Proceedings of the International Electron Devices Meeting
, pp.
773
779
.
10.
Hammad
,
B. K.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2010, “
Modeling and Analysis of Electrostatic MEMS Filters
,”
Nonlinear Dyn.
0924-090X,
60
(
3
), pp.
385
401
.
11.
Hammad
,
B. K.
, 2008, “
Modeling, Simulation, and Analysis of Micromechanical Filters Coupled With Capacitive Transducers
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
12.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
(
5
), pp.
672
680
.
13.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2004, “
Finite-Amplitude Motions of Resonators and Their Stability
,”
J. Comput. Theor. Nanosci.
1546-1955,
1
, pp.
385
391
.
14.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
,
Wiley
,
New York
.
15.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
16.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
17.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
18.
Thomsen
,
J. J.
, 2003,
Vibrations and Stability
,
Springer
,
New York
.
19.
Nayfeh
,
A. H.
, and
Zavodney
,
L. D.
, 1988, “
Experimental Observations of Amplitude- and Phase-Modulated Responses of Two Internally Coupled Oscillators to a Harmonic Excitation
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
706
710
.
You do not currently have access to this content.