In this article, the finite element simulation of cables is investigated for future applications to robotics and hydrodynamics. The solution is based on the geometrically exact approach of Cosserat beams in finite transformations, as initiated by Simo in the 1980s. However, the internal basic kinematics of the beam theory is not those of Reissner–Timoshenko but rather those of Kirchhoff. Based on these kinematics, the dynamic model adopted is a nonlinear extension of the so-called linear model of twisted and stretched Euler–Bernoulli beams. In agreement with the investigated applications, one or both of the ends of the cable are submitted to predefined motions. This model is also implemented into a computational fluid dynamics code, which solves the Reynolds-averaged Navier–Stokes equations. Regarding this last point, an implicit/iterative algorithm including a conservative load transfer for the variable hydrodynamic forces exerted all along the beam length has been used to reach a stable coupling. The relevance of the approach is tested through three advanced examples. The first is related to the prediction of cable motion in robotics. Then, the two last illustrations deal with fluid-structure interaction (FSI). A 2D classical benchmark in FSI is first investigated, and, at last, a computation illustrates the procedure in a 3D case.
Skip Nav Destination
e-mail: frederic.boyer@emn.fr
e-mail: denayer@hsu-hh.de
e-mail: alban.leroyer@ec-nantes.fr
e-mail: michel.visonneau@ec-nantes.fr
Article navigation
October 2011
Research Papers
Geometrically Exact Kirchhoff Beam Theory: Application to Cable Dynamics
Frédéric Boyer,
e-mail: frederic.boyer@emn.fr
Frédéric Boyer
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN)
, Ecole des Mines de Nantes
, La Chantrerie, 4, rue Alfred Kastler, B. P. 20722, F-44307 Nantes, Cedex 3, France
Search for other works by this author on:
Guillaume De Nayer,
Guillaume De Nayer
Fakultät für Maschinenbau,
e-mail: denayer@hsu-hh.de
Helmut-Schmidt Universität
, Holstenhofweg 85, Hamburg, Germany
Search for other works by this author on:
Alban Leroyer,
Alban Leroyer
Laboratoire de Mécanique des Fluides, UMR CNRS 6598,
e-mail: alban.leroyer@ec-nantes.fr
Ecole Centrale de Nantes
, 1 rue de la Noë, B.P. 92101, Nantes 44321, Cedex 3, France
Search for other works by this author on:
Michel Visonneau
Michel Visonneau
Laboratoire de Mécanique des Fluides, UMR CNRS 6598,
e-mail: michel.visonneau@ec-nantes.fr
Ecole Centrale de Nantes
, 1 rue de la Noë, B.P. 92101, Nantes 44321, Cedex 3, France
Search for other works by this author on:
Frédéric Boyer
Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN)
, Ecole des Mines de Nantes
, La Chantrerie, 4, rue Alfred Kastler, B. P. 20722, F-44307 Nantes, Cedex 3, Francee-mail: frederic.boyer@emn.fr
Guillaume De Nayer
Fakultät für Maschinenbau,
Helmut-Schmidt Universität
, Holstenhofweg 85, Hamburg, Germanye-mail: denayer@hsu-hh.de
Alban Leroyer
Laboratoire de Mécanique des Fluides, UMR CNRS 6598,
Ecole Centrale de Nantes
, 1 rue de la Noë, B.P. 92101, Nantes 44321, Cedex 3, Francee-mail: alban.leroyer@ec-nantes.fr
Michel Visonneau
Laboratoire de Mécanique des Fluides, UMR CNRS 6598,
Ecole Centrale de Nantes
, 1 rue de la Noë, B.P. 92101, Nantes 44321, Cedex 3, Francee-mail: michel.visonneau@ec-nantes.fr
J. Comput. Nonlinear Dynam. Oct 2011, 6(4): 041004 (14 pages)
Published Online: April 5, 2011
Article history
Received:
July 14, 2010
Revised:
January 19, 2011
Online:
April 5, 2011
Published:
April 5, 2011
Citation
Boyer, F., De Nayer, G., Leroyer, A., and Visonneau, M. (April 5, 2011). "Geometrically Exact Kirchhoff Beam Theory: Application to Cable Dynamics." ASME. J. Comput. Nonlinear Dynam. October 2011; 6(4): 041004. https://doi.org/10.1115/1.4003625
Download citation file:
Get Email Alerts
An Efficient Analysis of Amplitude and Phase Dynamics in Networked MEMS-Colpitts Oscillators
J. Comput. Nonlinear Dynam
Influences of Tooth Crack on Dynamic Characteristics of a Multi-Stage Gear Transmission System Considering the Flash Temperature
J. Comput. Nonlinear Dynam (December 2024)
Data-Driven Modeling of Tire–Soil Interaction With Proper Orthogonal Decomposition-Based Model Order Reduction
J. Comput. Nonlinear Dynam (December 2024)
Related Articles
Special Issue on Computational Fluid Mechanics and Fluid–Structure Interaction Preface
J. Appl. Mech (January,2012)
An Efficient Localized Radial Basis Function Meshless Method for Fluid Flow and Conjugate Heat Transfer
J. Heat Transfer (February,2007)
Breakup of Liquid Sheets and Jets
Appl. Mech. Rev (July,2004)
A Temperature-based Controller for a Shape Memory Alloy Actuator
J. Vib. Acoust (June,2005)
Related Proceedings Papers
Related Chapters
List of Commercial Codes
Introduction to Finite Element, Boundary Element, and Meshless Methods: With Applications to Heat Transfer and Fluid Flow
Mechanics of Long Beam Columns
Mechanics of Drillstrings and Marine Risers
Modeling Fluid-Structure Interaction in Cavitation Erosion using Smoothed Particle Hydrodynamics
Proceedings of the 10th International Symposium on Cavitation (CAV2018)