In this article, the finite element simulation of cables is investigated for future applications to robotics and hydrodynamics. The solution is based on the geometrically exact approach of Cosserat beams in finite transformations, as initiated by Simo in the 1980s. However, the internal basic kinematics of the beam theory is not those of Reissner–Timoshenko but rather those of Kirchhoff. Based on these kinematics, the dynamic model adopted is a nonlinear extension of the so-called linear model of twisted and stretched Euler–Bernoulli beams. In agreement with the investigated applications, one or both of the ends of the cable are submitted to predefined motions. This model is also implemented into a computational fluid dynamics code, which solves the Reynolds-averaged Navier–Stokes equations. Regarding this last point, an implicit/iterative algorithm including a conservative load transfer for the variable hydrodynamic forces exerted all along the beam length has been used to reach a stable coupling. The relevance of the approach is tested through three advanced examples. The first is related to the prediction of cable motion in robotics. Then, the two last illustrations deal with fluid-structure interaction (FSI). A 2D classical benchmark in FSI is first investigated, and, at last, a computation illustrates the procedure in a 3D case.

1.
Cosserat
,
E.
, and
Cosserat
,
F.
, 1909, Théorie des corps déformables, Hermann.
2.
Timoshenko
,
S. P.
, 1921, “
LXVI. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philosophical Magazine Series 6
,
41
, pp.
744
746
.
3.
Reissner
,
E.
, 1973, “
On a One-Dimensional Large Displacement Finite-Strain Theory
,”
Stud. Appl. Math.
0022-2526,
52
, pp.
87
95
.
4.
Simo
,
J. C.
, 1985, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I: Formulation and Optimal Parametrization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
49
, pp.
55
70
.
5.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
116
.
6.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1988, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
66
, pp.
125
161
.
7.
Cardona
,
A.
, and
Gérardin
,
M.
, 1988, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2403
2438
.
8.
Cardona
,
A.
,
Gérardin
,
M.
, and
Doan
,
D. B.
, 1991, “
Rigid and Flexible Joint Modelling in Multibody Dynamics Using Finite Element
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
89
, pp.
395
418
.
9.
Ibrahimbegovic
,
A.
,
Frey
,
F.
, and
Kozar
,
I.
, 1995, “
Computational Aspects of Vector-Like Parametrization of Three-Dimensional Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
38
, pp.
3653
3673
.
10.
Ibrahimbegovic
,
A.
, 1997, “
On the Choice of Finite Rotation Parameters
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
, pp.
49
71
.
11.
Ibrahimbegovic
,
A.
, and
Al Mikdad
,
M.
, 1999, “
Finite Rotations in Dynamics of Beams and Implicit Time-Stepping Schemes
,”
Int. J. Numer. Methods Eng.
0029-5981,
41
, pp.
781
814
.
12.
Ibrahimbegovic
,
A.
, and
Mamouri
,
S.
, 2000, “
On Rigid Components and Joint Constraints in Nonlinear Dynamics of Flexible Multibody Systems Employing 3D Geometrically Exact Beam Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
188
, pp.
805
831
.
13.
Chrisfield
,
M. A.
, and
Jelenic
,
G.
, 1999, “
Objectivity of Strain Measures in the Geometrically Exact Three-Dimensional Beam Theory and Its Finite-Element Implementation
,”
Proc. R. Soc. London, Ser. A
0950-1207,
455
, pp.
1125
1147
.
14.
Kapania
,
R. K.
, and
Li
,
J.
, 2003, “
On a Geometrically Exact Curved/Twisted Beam Theory Under Rigid Cross-Section Assumption
,”
Comput. Mech.
0178-7675,
30
, pp.
428
443
.
15.
Zupan
,
D.
, and
Saje
,
M.
, 2003, “
Finite-Element Formulation of Geometrically Exact Three-Dimensional Theories Based on Interpolation of Strain Measures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
5209
5248
.
16.
Simo
,
J. C.
,
Fox
,
D. D.
, and
Rifai
,
M. S.
, 1990, “
On a Stress Resultant Geometrically Exact Shell Model. Part III: Computational Aspects of the Non Linear Theory
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
79
, pp.
21
70
.
17.
Love
,
A. E. H.
, 1944,
A Treatise on the Mathematical Theory of Elasticity
,
4th ed.
,
Dover
,
New York
.
18.
Burgess
,
J. J.
, 1993, “
Bending Stiffness in a Simulation of Undersea Cable Deployment
,”
Int. J. Offshore Polar Eng.
1053-5381,
3
, pp.
197
204
.
19.
Triantafyllou
,
M. S.
, and
Howell
,
C. T.
, 1994, “
Dynamics Response of Cables Under Negative Tension: An Ill-Posed Problem
,”
J. Sound Vib.
0022-460X,
173
(
4
), pp.
433
447
.
20.
Sun
,
Y.
, and
Leonard
,
J. W.
, 1998, “
Dynamics of Ocean Cables With Local Low-Tension Regions
,”
IEEE J. Ocean. Eng.
0364-9059,
25
(
6
), pp.
443
463
.
21.
Tjavaras
,
A. A.
,
Zhu
,
Q.
,
Liu
,
Y.
,
Triantafyllou
,
M. S.
, and
Yue
,
D. K. P.
, 1998, “
The Mechanics of Highly-Extensible Cables
,”
J. Sound Vib.
0022-460X,
213
(
4
), pp.
709
737
.
22.
Wang
,
P.
,
Fung
,
R.
, and
Lee
,
M.
, 1998, “
Finite Element Analysis of a Three-Dimensional Underwater Cable With Time-Dependent Length
,”
J. Sound Vib.
0022-460X,
209
(
2
), pp.
223
249
.
23.
Boyer
,
F.
, and
Primault
,
D.
, 2004, “
Finite Element of Slender Beams in Finite Transformations: A Geometrically Exact Approach
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
669
702
.
24.
Meirovich
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
25.
Antman
,
S.
, 1972,
The Theory of Rods
,
Springer
,
Berlin
.
26.
Naghdi
,
P. M.
, 1980, “
Finite Deformation of Elastic Rods and Shells
,”
Proceedings of the IUTAM, Symposium on Finite Elasticity
.
27.
Gamkrelidze
,
R. V.
, 1991,
Encyclopaedia of Mathematical Sciences, Vol. 28, Geometry I
,
Springer-Verlag
,
Berlin
.
28.
Simo
,
J. C.
, and
Fox
,
D. D.
, 1989, “
On a Stress Resultant Geometrically Exact Shell Model. Part I: Formulation and Optimal Parametrization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
72
, pp.
267
304
.
29.
Ibrahimbegovic
,
A.
,
Brank
,
B.
, and
Courtois
,
P.
, 2001, “
Stress Resultant Geometrically Exact Form of Classical Shell Model and Vector Like Parametrization of Constrained Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
52
, pp.
1235
1252
.
30.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Gérardin
,
M.
, and
Rixen
,
D.
, 1997,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
,
New York
.
32.
Simo
,
J. C.
, and
Wong
,
K. K.
, 1991, “
Unconditionally Stable Algorithms for Rigid Body Dynamics That Exactly Preserve Energy and Momentum
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
19
52
.
33.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
, 1994,
Mathematical Foundations of Elasticity
,
Dover
,
New York
.
34.
Hilbert
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
35.
Wood
,
W. L.
,
Bossak
,
M.
, and
Zienkiewics
,
O. C.
, 1980, “
An Alpha Modification of Newmark’s Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1562
1566
.
36.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
371
375
.
37.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
USA
.
38.
Wall
,
W. A.
, and
Ramm
,
E.
, 1998, “
Fluid-Structure Interaction Based Upon a Stabilized (ALE) Finite Element Method
,”
IV World Congress on Computational Mechanics
,
S. R.
Idelsohn
,
E.
Onate
, and
E. N.
Dvorkin
, eds.
39.
Huebner
,
B.
,
Walhorn
,
E.
, and
Dinkier
,
D.
, 2004, “
A Monolithic Approach to Fluid-Structure Interaction Using Space-Time Finite Element
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
2087
2104
.
40.
De Nayer
,
G.
, 2008, “
Interaction Fluide-Structure pour les corps élancés
,” Ph.D. thesis, Ecole Centrale Nantes, France. Available on-line: ftp://ftpa.ec-nantes.fr/user/ftp-emn/pub/Thesis/these_denayer.pdfftp://ftpa.ec-nantes.fr/user/ftp-emn/pub/Thesis/these_denayer.pdf
41.
de Boer
,
A.
,
van Zuijlen
,
A. H.
, and
Bijl
,
H.
, 2007, “
Review of Coupling Methods for Non-Matching Meshes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
, pp.
515
1525
.
42.
Valdés Vázquez
,
J. G.
, 2007, “
Nonlinear Analysis of Orthotropic Membrane and Shell Structures Including Fluid-Structure Interaction
,” Ph.D. thesis, Université polytechnique de Catalogne.
43.
Simo
,
J. C.
,
Tarnow
,
N.
, and
Wong
,
K. K.
, 1992, “
Exact Energy-Momentum Conserving Algorithms and Symplectic Schemes for Nonlinear Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
100
, pp.
63
116
.
44.
Lewis
,
D.
, and
Simo
,
J. C.
, 1994, “
Conserving Algorithms for the Dynamics of Hamiltonian Systems on Lie Groups
,”
J. Nonlinear Sci.
0938-8794,
4
, pp.
253
299
.
45.
Marsden
,
J. E.
, and
West
,
M.
, 2011, “
Discrete Mechanics and Variational Integrators
,”
Acta Numerica
0962-4929,
10
, pp.
357
514
.
46.
Leimkuhler
,
B.
, and
Patrick
,
G. W.
, 1996, “
A Symplectic Integrator for Riemannian Manifolds
,”
J. Nonlinear Sci.
0938-8794,
6
, pp.
367
384
.
You do not currently have access to this content.