This paper deals with the nonlinear aeroelastic behaviors of bending-torsion wings subjected to a transverse follower force. The nonlinear structural wing formulation is based on von Karman large deformation theory. In order to accurately consider the spanwise location of the follower force, the generalized function theory is used. Also, Peter’s finite-state unsteady aerodynamic model is considered. The governing equations are obtained using Hamilton’s principle. Furthermore, the Galerkin method is applied to convert the partial differential equations into a set of nonlinear ordinary differential equations, which will be solved through the numerical integration scheme. Wing dynamic behaviors are investigated through frequency spectra and the bifurcation diagrams of Poincaré maps. In addition, the postcritical region, which includes all periodic, quasiperiodic, and chaotic pockets, is indeed found to exist. Furthermore, the results indicate noticeable effects of the follower force magnitude and location as well as the air stream velocity on critical and postcritical behaviors of a wing.

1.
Moon
,
F. C.
, 1992,
Chaotic and Fractal Dynamics
,
Wiley
,
New York
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
3.
Hilborn
,
R. C.
, 2000,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers
, 2nd ed.,
Oxford University Press
,
New York
.
4.
Dowell
,
E. H.
,
Edwards
,
J.
, and
Strganac
,
T. W.
, 2003, “
Nonlinear Aeroelasticity
,”
J. Aircr.
0021-8669,
40
, pp.
857
874
.
5.
Tang
,
D. M.
, and
Dowell
,
E. H.
, 2002, “
Limit Cycle Hysteresis Response for a High-Aspect Ratio Wing Model
,”
J. Aircr.
0021-8669,
39
, pp.
885
888
.
6.
Patil
,
M.
, and
Hodges
,
D.
, 2000, “
Nonlinear Aeroelastic Analysis of Complete Aircraft in Subsonic Flow
,”
J. Aircr.
0021-8669,
37
, pp.
753
760
.
7.
Marzocca
,
P.
,
Librescu
,
L.
, and
Silva
,
W. A.
, 2002, “
Aeroelastic Response and Flutter of Swept Aircraft Wings
,”
AIAA J.
0001-1452,
40
, pp.
801
812
.
8.
Kim
,
K.
, and
Strganac
,
T.
, 2003, “
Nonlinear Responses of a Cantilever Wing With an External Store
,”
44th AIAA Structures, Structural Dynamics, and Materials Conference
, Norfolk, VA, AIAA Paper No. 2003-1708.
9.
Beran
,
P. S.
,
Strganac
,
T. W.
,
Kim
,
K.
, and
Nichkawde
,
C.
, 2004, “
Studies of Store-Induced Limit-Cycle Oscillations Using a Model With Full System Nonlinearities
,”
Nonlinear Dyn.
0924-090X,
37
, pp.
323
339
.
10.
Ghadiri
,
B.
, and
Razi
,
M.
, 2007, “
Limit Cycle Oscillations of Rectangular Cantilever Wings Containing Cubic Nonlinearity in an Incompressible Flow
,”
J. Fluids Struct.
0889-9746,
23
, pp.
665
680
.
11.
Shams
,
Sh.
,
Sadr Lahidjani
,
M. H.
, and
Haddadpour
,
H.
, 2008, “
Nonlinear Aeroelastic Response of Slender Wings Based on Wagner Function
,”
Thin-Walled Struct.
0263-8231,
46
, pp.
1192
1203
.
12.
Jian
,
Z.
, and
Jinwu
,
X.
, 2009, “
Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings
,”
Chinese J. Aeronaut.
,
22
, pp.
355
363
.
13.
Bolotin
,
V. V.
, 1963,
Non-Conservative Problems of the Theory of Elastic Stability
,
Pergamon
,
Oxford
.
14.
Zuo
,
Q. H.
, and
Schreyer
,
H. L.
, 1996, “
Flutter and Divergence Instability of Non-Conservative Beams and Plates
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
1355
1367
.
15.
Detinko
,
F. M.
, 2002, “
Some Phenomena for Lateral Flutter of Beams Under Follower Load
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
341
350
.
16.
Nair
,
R. G.
,
Rao
,
G. V.
, and
Singh
,
G.
, 2002, “
Stability of Short Uniform Column Subjected to an Intermediate Force
,”
J. Sound Vib.
0022-460X,
253
, pp.
1125
1130
.
17.
Paolone
,
A.
,
Vasta
,
M.
, and
Luongo
,
A.
, 2006, “
Flexural–Torsional Bifurcations of a Cantilever Beam Under Potential and Circulatory Forces II. Post-Critical Analysis
,”
Int. J. Non-Linear Mech.
0020-7462,
41
, pp.
595
604
.
18.
Como
,
M.
, 1966, “
Lateral Buckling of a Cantilever Subjected to a Transverse Follower Force
,”
Int. J. Solids Struct.
0020-7683,
2
, pp.
515
523
.
19.
Feldt
,
W. T.
, and
Herrmann
,
G.
, 1974, “
Bending-Torsional Flutter of a Cantilevered Wing Containing a Tip Mass and Subjected to a Transverse Follower Force
,”
J. Franklin Inst.
0016-0032,
297
, pp.
467
478
.
20.
Hodges
,
D. H.
, 2001, “
Lateral-Torsional Flutter of a Deep Cantilever Loaded by a Lateral Follower Force at the Tip
,”
J. Sound Vib.
0022-460X,
247
, pp.
175
183
.
21.
Hodges
,
D. H.
,
Patil
,
M. J.
, and
Chae
,
S.
, 2002, “
Effect of Thrust on Bending-Torsion Flutter of Wings
,”
J. Aircr.
0021-8669,
39
, pp.
371
376
.
22.
Fazelzadeh
,
S. A.
,
Mazidi
,
A.
, and
Kalantari
,
H.
, 2009, “
Bending-Torsional Flutter of Wings With an Attached Mass Subjected to a Follower Force
,”
J. Sound Vib.
0022-460X,
323
, pp.
148
162
.
23.
Mazidi
,
A.
, and
Fazelzadeh
,
S. A.
, 2010, “
The Flutter of a Swept Aircraft Wing With a Powered-Engine
,”
J. Aerosp. Eng.
0893-1321,
23
, pp.
243
250
.
24.
Mazidi
,
A.
,
Fazelzadeh
,
S. A.
, and
Marzocca
,
P.
, 2010, “
Effects of Rolling Angular Velocity on the Flutter of Wing-Store Under Follower Force
,”
Proceedings of the 3rd Joint US-European Fluids Engineering Summer Meeting
, Montreal, Canada.
25.
Hodges
,
D. H.
, and
Dowell
,
E. H.
, 1974, “
Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Non-Uniform Rotor Blades
,”
NASA
, Technical Report No. NASA TN D-7810.
26.
Peters
,
D. A.
,
Karunamoorthy
,
S.
, and
Cao
,
W. M.
, 1995, “
Finite State Induced Flow Models; Part I: Two-Dimensional Thin Airfoil
,”
J. Aircr.
0021-8669,
32
, pp.
313
322
.
27.
Hodges
,
D. H.
, and
Pierce
,
G. A.
, 2002,
Introduction to Structural Dynamics and Aeroelasticity
,
Cambridge University Press
,
Cambridge
.
28.
Peters
,
D. A.
, 2008, “
Two-Dimensional Incompressible Unsteady Airfoil Theory—An Overview
,”
J. Fluids Struct.
0889-9746,
24
, pp.
295
312
.
29.
Fletcher
,
C. A. J.
, 1984,
Computational Galerkin Methods
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.