The parameterizations of rotation and motion are the subject of continuous research and development in many theoretical and applied fields of mechanics such as rigid body, structural, and multibody dynamics. Tensor analysis expresses the invariance of the laws of physics with respect to the change of basis and change of frame operations. Consequently, it is imperative to formulate mechanics problems in terms of tensorial quantities. This paper presents formal proofs that rotation and motion parameterizations are tensors if and only if they are parallel to the eigenvectors of the rotation and motion tensors, respectively, associated with their unit eigenvalues. Furthermore, it also establishes that the tangent operators of rotation and motion are of a tensorial nature if and only if they are expressed in terms of the vectorial parameterizations of rotation and motion, respectively. Finally, important tensor identities are shown to hold for all vectorial parameterization of rotation and motion.

1.
Kane
,
T. R.
, 1968,
Dynamics
,
Holt, Rinehart and Winston, Inc.
,
New York
.
2.
Cardona
,
A.
, 1989, “
An Integrated Approach to Mechanism Analysis
,” Ph.D. thesis, Université de Liège, Belgium.
3.
Shuster
,
M. D.
, 1993, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
0021-9142,
41
(
4
), pp.
439
517
.
4.
Ibrahimbegović
,
A.
, 1997, “
On the Choice of Finite Rotation Parameters
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
, pp.
49
71
.
5.
Bauchau
,
O. A.
, and
Trainelli
,
L.
, 2003, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
0924-090X,
32
(
1
), pp.
71
92
.
6.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
, 2003, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
0924-090X,
33
(
2
), pp.
165
188
.
7.
Flügge
,
W.
, 1972,
Tensor Analysis and Continuum Mechanics
,
Springer-Verlag
,
New York
.
8.
Bauchau
,
O. A.
, 2010,
Flexible Multibody Dynamics
,
Springer
,
New York
.
9.
Ball
,
R. S.
, 1998,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
10.
Angeles
,
J.
, 1993, “
On Twist and Wrench Generators and Annihilators
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
,
M. F. O.
Seabra Pereira
and
J. A. C.
Ambrosio
, eds., NATO ASI Series,
Kluwer Academic
,
Dordrecht
, pp.
379
411
.
11.
Chevallier
,
D. P.
, 1991, “
Lie Algebra, Modules, Dual Quaternions and Algebraic Methods in Kinematics
,”
Mech. Mach. Theory
0094-114X,
26
(
6
), pp.
613
627
.
12.
Yang
,
A. T.
, and
Freudenstein
,
F.
, 1964, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanims
,”
ASME J. Appl. Mech.
0021-8936,
86
, pp.
300
308
.
13.
Agrawal
,
O. P.
, 1987, “
Hamilton Operators and Dual-Number Quaternions in Spatial Kinematics
,”
Mech. Mach. Theory
0094-114X,
22
(
6
), pp.
569
575
.
14.
McCarthy
,
J. M.
, 1990,
An Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
15.
Fischer
,
I. S.
, 1999,
Dual Number Methods in Kinematics, Statics and Dynamics
,
CRC
,
Boca Raton, FL
.
16.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
Dover
,
New York
.
17.
Pradeep
,
A. K.
,
Yoder
,
P. J.
, and
Mukundan
,
R.
, 1989, “
On the Use of Dual Matrix Exponentials in Robot Kinematics
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
57
66
.
18.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
19.
Angeles
,
J.
, 1998, “
The Application of Dual Algebra to Kinematic Analysis
,”
Computational Methods in Mechanical Systems
,
J.
Angeles
and
E.
Zakhariev
, eds.,
Springer-Verlag
,
Heidelberg
, Vol.
161
, pp.
3
31
.
20.
Howard
,
S.
,
Zefran
,
M.
, and
Kumar
,
V.
, 1998, “
On the 6×6 Cartesian Stiffness Matrix for Three-Dimensional Motions
,”
Mech. Mach. Theory
0094-114X,
33
(
4
), pp.
389
408
.
21.
Brodsky
,
V.
, and
Shoham
,
M.
, 1994, “
The Dual Inertia Operator and Its Application to Robot Dynamics
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
1089
1095
.
22.
Pennestrì
,
E.
, and
Stefanelli
,
R.
, 2007, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
1384-5640,
18
, pp.
323
344
.
23.
Merlini
,
T.
, and
Morandini
,
M.
, 2004, “
The Helicoidal Modeling in Computational Finite Elasticity. Part I: Variational Formulation
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5351
5381
.
24.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
, 2000, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
1384-5640,
4
, pp.
129
193
.
25.
Bauchau
,
O. A.
,
Li
,
L. H.
,
Masarati
,
P.
, and
Morandini
,
M.
, “
Tensorial Deformation Measures for Flexible Joints
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423, to be published.
You do not currently have access to this content.