Limit-switch sensors are input-output devices that switch operating state in reaction to the crossing of a threshold value of their input. These are used to monitor and control critical values of temperature, voltage, pressure, etc., in both consumer and industrial settings. This paper argues for exploiting nonsmooth fold bifurcations in the design of ultrafast and robust, resettable, electromechanical limit switches. Specifically, the discussion emphasizes the dramatic changes in system response associated with the onset of near-grazing, low-velocity contact in vibro-impacting systems. These include rapid transient dynamics away from a pre-grazing, periodic, steady-state trajectory following the onset of impacts and post-grazing steady-state trajectories with a distinctly different amplitude and frequency content. The results reported here include a review of an experimental and computational verification of the ultrafast transient growth rates that show a significant potential for dramatic improvement in sensor performance. Moreover, two novel candidate sensor designs are discussed that rely on the post-grazing response characteristics for device function. In the first instance, transduction of a change in the response periodicity following grazing in a mechanical device is detected in a coupled electromagnetic circuit. In the second instance, a snap-through post-grazing response forms the operating principle of a capacitively driven circuit protection device.

1.
Castro
,
F. M.
, 1991, “
Mechanical Switches Snap Back
,”
Mach. Des.
0024-9114,
63
(
19
), pp.
56
58
and 60–66.
2.
Abdel-Rahman
,
E.
, and
Nayfeh
,
A.
, 2003, “
Secondary Resonances of Microsensors
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
491
501
.
3.
Turner
,
K.
,
Baskaran
,
R.
, and
Zhang
,
W.
, 2003, “
Using Nonlinear Dynamics for Performance Enhancement in Resonant Micro and Nano-Scale Devices
,”
2003 Proceedings of the 42nd IEEE Conference on Decision and Control
, Vol.
3
.
4.
Zhang
,
W.
,
Baskaran
,
R.
, and
Turner
,
K.
, 2002, “
Effect of Cubic Nonlinearity on Auto-Parametrically Amplified Resonant MEMS Mass Sensor
,”
Sens. Actuators, A
0924-4247,
102
(
1–2
), pp.
139
150
.
5.
Zhang
,
W.
, and
Turner
,
K. L.
, 2005, “
Application of Parametric Resonance Amplification in a Single-Crystal Silicon Micro-Oscillator Based Mass Sensor
,”
Sens. Actuators, A
0924-4247,
122
(
1
), pp.
23
30
.
6.
Movshovich
,
R.
,
Yurke
,
B.
,
Smith
,
A.
, and
Silver
,
A.
, 1991, “
Subharmonic Pumping of a Josephson-Parametric Amplifier and the Pitchfork Instability
,”
Phys. Rev. Lett.
0031-9007,
67
(
11
), pp.
1411
1414
.
7.
Siddiqi
,
I.
,
Vijay
,
R.
,
Pierre
,
F.
,
Wilson
,
C.
,
Metcalfe
,
M.
,
Rigetti
,
C.
,
Frunzio
,
L.
, and
Devoret
,
M.
, 2004, “
RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement
,”
Phys. Rev. Lett.
0031-9007,
93
(
20
), p.
207002
.
8.
Mohr
,
T.
, and
Uhlmann
,
F.
, 2000, “
Detecting Thresholds by Means of Jump-Phenomena
,”
7th IEEE International Conference on Electronics, Circuits and Systems
, Vol.
2
.
9.
Wilcox
,
B.
,
Svahn
,
F.
,
Dankowicz
,
H.
, and
Jerrelind
,
J.
, 2009, “
Transient Growth Rates of Near-Grazing Impact Velocities: Theory and Experiments
,”
J. Sound Vib.
0022-460X,
325
(
4–5
), pp.
950
958
.
10.
Fredriksson
,
M.
, and
Nordmark
,
A.
, 1997, “
Bifurcations Caused by Grazing Incidence in Many Degrees of Freedom Impact Oscillators
,”
Proc. R. Soc. London, Ser. A
0950-1207,
453
(
1961
), pp.
1261
1276
.
11.
Nordmark
,
A.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
(
2
), pp.
279
297
.
12.
Nordmark
,
A.
, 1992, “
Effects Due to Low Velocity Impact in Mechanical Oscillators
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
2
(
3
), pp.
597
605
.
13.
Nordmark
,
A.
, 1997, “
Universal Limit Mapping in Grazing Bifurcations
,”
Phys. Rev. E
1063-651X,
55
(
1
), pp.
266
270
.
14.
Chin
,
W.
,
Ott
,
E.
,
Nusse
,
H.
, and
Grebogi
,
C.
, 1994, “
Grazing Bifurcations in Impact Oscillators
,”
Phys. Rev. E
1063-651X,
50
(
6
), pp.
4427
4444
.
15.
Dankowicz
,
H.
, and
Zhao
,
X.
, 2005, “
Local Analysis of Co-Dimension-One and Co-Dimension-Two Grazing Bifurcations in Impact Microactuators
,”
Physica D
0167-2789,
202
(
3–4
), pp.
238
257
.
16.
Foale
,
S.
, and
Bishop
,
S.
, 1994, “
Bifurcations in Impact Oscillations
,”
Nonlinear Dyn.
0924-090X,
6
(
3
), pp.
285
299
.
17.
Molenaar
,
J.
,
de Weger
,
J.
, and
Van de Water
,
W.
, 2001, “
Mappings of Grazing-Impact Oscillators
,”
Nonlinearity
0951-7715,
14
, pp.
301
321
.
18.
Thota
,
P.
, and
Dankowicz
,
H.
, 2006, “
Continuous and Discontinuous Grazing Bifurcations in Impacting Oscillators
,”
Physica D
0167-2789,
214
(
2
), pp.
187
197
.
19.
Thota
,
P.
,
Zhao
,
X.
, and
Dankowicz
,
H.
, 2006, “
Co-Dimension-Two Grazing Bifurcations in Single-Degree-of-Freedom Impact Oscillators
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
328
335
.
20.
Zhao
,
X.
, and
Dankowicz
,
H.
, 2006, “
Unfolding Degenerate Grazing Dynamics in Impact Actuators
,”
Nonlinearity
0951-7715,
19
(
2
), pp.
399
418
.
21.
Zhao
,
X.
, and
Dankowicz
,
H.
, 2006, “
Control of Impact Microactuators for Precise Positioning
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
65
70
.
22.
Zhao
,
X.
,
Dankowicz
,
H.
,
Reddy
,
C.
, and
Nayfeh
,
A.
, 2004, “
Modeling and Simulation Methodology for Impact Microactuators
,”
J. Micromech. Microeng.
0960-1317,
14
(
6
), pp.
775
784
.
23.
Bishop
,
S.
,
Thompson
,
M.
, and
Foale
,
S.
, 1996, “
Prediction of Period-1 Impacts in a Driven Beam
,”
Proc. R. Soc. London, Ser. A
0950-1207,
452
(
1954
), pp.
2579
2592
.
24.
Fang
,
W.
, and
Wickert
,
J.
, 1994, “
Response of a Periodically Driven Impact Oscillator
,”
J. Sound Vib.
0022-460X,
170
(
3
), pp.
397
409
.
25.
Fredriksson
,
M.
,
Borglund
,
D.
, and
Nordmark
,
A.
, 1999, “
Experiments on the Onset of Impacting Motion Using a Pipe Conveying Fluid
,”
Nonlinear Dyn.
0924-090X,
19
(
3
), pp.
261
271
.
26.
Piiroinen
,
P.
,
Virgin
,
L.
, and
Champneys
,
A.
, 2004, “
Chaos and Period-Adding; Experimental and Numerical Verification of the Grazing Bifurcation
,”
J. Nonlinear Sci.
0938-8794,
14
(
4
), pp.
383
404
.
27.
Shaw
,
S.
, 1985, “
Forced Vibrations of a Beam With One-Sided Amplitude Constraint: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
99
(
2
), pp.
199
212
.
28.
Stensson
,
A.
, and
Nordmark
,
A.
, 1994, “
Experimental Investigation of Some Consequences of Low Velocity Impacts in the Chaotic Dynamics of a Mechanical System
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
347
(
1683
), pp.
439
448
.
29.
Wilcox
,
B.
, and
Dankowicz
,
H.
, “
An experimental testbed for investigating nonsmooth bifurcations in an electromechanical system
,” Journal of Vibration and Control, in press.
30.
Krause
,
P.
, and
Wasynczuk
,
O.
, 1989,
Electromechanical Motion Devices
,
McGraw-Hill
,
New York
.
31.
Quintana
,
J.
, and
Avedillo
,
M.
, 2004, “
Nonlinear Dynamics in Frequency Divider RTD Circuits
,”
Electron. Lett.
0013-5194,
40
(
10
), pp.
586
587
.
32.
Sarafian
,
G.
, and
Kaplan
,
B.
, 1996, “
The Dynamics of Parametric Frequency Divider and Some of Its Practical Implications
,”
19th Convention of Electrical and Electronics Engineers in Israel
, pp.
523
526
.
33.
Casals-Terre
,
J.
,
Fargas-Marques
,
A.
, and
Shkel
,
A.
, 2008, “
Snap-Action Bistable Micromechanisms Actuated by Nonlinear Resonance
,”
J. Microelectromech. Syst.
1057-7157,
17
(
5
), pp.
1082
1093
.
34.
Krylov
,
S.
,
Ilic
,
B.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
, 2008, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
055026
.
35.
Madou
,
M.
, 2002,
Fundamentals of Microfabrication: The Science of Miniaturization
,
CRC
,
Boca Raton, FL
.
36.
Chatzandroulis
,
S.
,
Koliopoulou
,
S.
,
Goustouridis
,
D.
, and
Tsoukalas
,
D.
, 2006, “
Capacitive Pressure Sensors and Switches Fabricated Using Strain Compensated SiGeB
,”
Microelectron. Eng.
0167-9317,
83
(
4–9
), pp.
1209
1211
.
37.
Chao
,
P.
,
Chiu
,
C.
, and
Tsai
,
C.
, 2006, “
A Novel Method to Predict the Pull-In Voltage in a Closed Form for Micro-Plates Actuated by a Distributed Electrostatic Force
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
986
998
.
38.
Krylov
,
S.
, and
Maimon
,
R.
, 2004, “
Pull-In Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
ASME J. Vibr. Acoust.
0739-3717,
126
, pp.
332
342
.
39.
Batra
,
R.
,
Porfiri
,
M.
, and
Spinello
,
D.
, 2006, “
Electromechanical Model of Electrically Actuated Narrow Microbeams
,”
J. Microelectromech. Syst.
1057-7157,
15
(
5
), pp.
1175
1189
.
40.
Kuznetsov
,
Y. A.
, 1998,
Elements of Applied Bifurcation Theory
,
Springer
,
New York
.
41.
Horowitz
,
P.
, and
Hill
,
W.
, 1989,
The Art of Electronics
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.