This paper presents an extended formulation of the basic continuation problem for implicitly defined, embedded manifolds in Rn. The formulation is chosen so as to allow for the arbitrary imposition of additional constraints during continuation and the restriction to selective parametrizations of the corresponding higher-codimension solution manifolds. In particular, the formalism is demonstrated to clearly separate between the essential functionality required of core routines in application-oriented continuation packages, on the one hand, and the functionality provided by auxiliary toolboxes that encode classes of continuation problems and user definitions that narrowly focus on a particular problem implementation, on the other hand. Several examples are chosen to illustrate the formalism and its implementation in the recently developed continuation core package COCO and auxiliary toolboxes, including the continuation of families of periodic orbits in a hybrid dynamical system with impacts and friction as well as the detection and constrained continuation of selected degeneracies characteristic of such systems, such as grazing and switching-sliding bifurcations.

1.
Keller
,
H. B.
, 1977, “
Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems
,”
Applications of Bifurcation Theory
,
Academic Press
,
New York
, pp.
359
384
.
2.
Menzel
,
R.
, and
Schwetlick
,
H.
, 1978, “
Zur Lösung Parameterabhängiger Nichtlinearer Gleichungen mit Singulären Jacobi-Matrizen
,”
Numer. Math.
0029-599X,
30
(
1
), pp.
65
79
.
3.
Henderson
,
M. E.
, 2002, “
Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
(
3
), pp.
451
476
.
4.
Krauskopf
,
B.
, and
Riess
,
Th.
, 2008, “
A Lin’s Method Approach to Finding and Continuing Heteroclinic Connections Involving Periodic Orbits
,”
Nonlinearity
0951-7715,
21
(
8
), pp.
1655
1690
.
5.
Schilder
,
F.
, and
Peckham
,
B. B.
, 2007, “
Computing Arnol’d Tongue Scenarios
,”
J. Comput. Phys.
0021-9991,
220
(
2
), pp.
932
951
.
6.
Wulff
,
C.
, and
Schilder
,
F.
, 2009, “
Numerical Bifurcation of Hamiltonian Relative Periodic Orbits
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
8
(
3
), pp.
931
966
.
7.
Doedel
,
E.
,
Champneys
,
A.
,
Fairgrieve
,
T.
,
Kuznetsov
,
Y.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1997, “
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
,” Concordia University Technical Report.
8.
Champneys
,
A. R.
,
Kuznetsov
,
Y. A.
, and
Sandstede
,
B.
, 1996, “
A Numerical Toolbox for Homoclinic Bifurcation Analysis
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
6
(
5
), pp.
867
887
.
9.
Dercole
,
F.
, and
Kuznetsov
,
Y. A.
, 2005, “
Slidecont: An Auto97 Driver for Bifurcation Analysis of Filippov Systems
,”
ACM Trans. Math. Softw.
0098-3500,
31
(
1
), pp.
95
119
.
10.
Thota
,
P.
, and
Dankowicz
,
H.
, 2008, “
TC-Hat (TCˆ): A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
7
(
4
), pp.
1283
1322
.
11.
Kuznetsov
,
Y. A.
, and
Levitin
,
V. V.
, 1997, “
CONTENT: A Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamical Systems
.” Centrum voor Wiskunde en Informatica, Technical Report.
12.
Govaerts
,
W.
,
Kuznetsov
,
Y. A.
, and
Dhooge
,
A.
, 2005, “
Numerical Continuation of Bifurcations of Limit Cycles in MATLAB
,”
SIAM J. Sci. Comput.
1064-8275,
27
(
1
), pp.
231
252
.
13.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y. A.
, 2003, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Softw.
0098-3500,
29
(
2
), pp.
141
164
.
14.
Wulff
,
C.
, and
Schebesch
,
A.
, 2006, “
Numerical Continuation of Symmetric Periodic Orbits
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
5
(
3
), pp.
435
475
.
15.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Roose
,
D.
, 2002, “
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL
,”
ACM Trans. Math. Softw.
0098-3500,
28
(
1
), pp.
1
21
.
16.
Szalai
,
R.
,
Stepan
,
G.
, and
Hogan
,
S. J.
, 2006, “
Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices
,”
SIAM J. Sci. Comput.
1064-8275,
28
(
4
), pp.
1301
1317
.
17.
Salinger
,
A. G.
,
Burroughs
,
E. A.
,
Pawlowski
,
R. P.
,
Phipps
,
E. T.
, and
Romero
,
L. A.
, 2005, “
Bifurcation Tracking Algorithms and Software for Large Scale Applications
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
3
), pp.
1015
1032
.
19.
Kuznetsov
,
Y. A.
, 2004,
Elements of Applied Bifurcation Theory
,
3rd ed.
, Section 10.2.2,
Springer-Verlag
,
New York
.
20.
Higham
,
D. J.
, and
Higham
,
N. J.
, 2005,
MATLAB Guide
,
2nd ed.
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, Chap. 5.
21.
Svahn
,
F.
, and
Dankowicz
,
H.
, 2008, “
Energy Transfer in Vibratory Systems With Friction Exhibiting Low-Velocity Collisions
,”
J. Vib. Control
1077-5463,
14
(
1–2
), pp.
255
284
.
22.
Kang
,
W.
,
Thota
,
P.
,
Wilcox
,
B.
, and
Dankowicz
,
H.
, 2009, “
Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
1
), p.
011009
(8 pp.).
23.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
, 2002, “
Bifurcations of Dynamical Systems With Sliding: Derivation of Normal-Form Mappings
,”
Physica D
0167-2789,
170
, pp.
175
205
.
24.
Haro
,
A.
, and
de la Llave
,
R.
, 2006, “
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Rigorous Results
,”
J. Differ. Equations
0022-0396,
228
(
2
), pp.
530
579
.
25.
Haro
,
A.
, and
de la Llave
,
R.
, 2006, “
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Numerical Algorithms
,”
Discrete Contin. Dyn. Syst., Ser. B
1531-3492,
6
(
6
), pp.
1261
1300
.
26.
Haro
,
A.
, and
de la Llave
,
R.
, 2007, “
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
6
(
1
), pp.
142
207
.
27.
Moore
,
G.
, 2005, “
Floquet Theory as a Computational Tool
,”
SIAM J. Numer. Anal.
0036-1429,
42
(
6
), pp.
2522
2568
.
You do not currently have access to this content.