Flexible joints, sometimes called bushing elements or force elements, are found in all multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of a multibody system. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, the identification of its stiffness characteristics is not so simple, especially if the joint itself is a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. Indeed, for finite deformation, the observed nonlinear behavior of materials is partly due to material characteristics and partly due to kinematics. This paper focuses on the determination of the proper finite deformation measures for elastic bodies of finite dimension. In contrast, classical strain measures, such as the Green–Lagrange or Almansi strains, among many others, characterize finite deformations of infinitesimal elements of a body. It is argued that proper finite deformation measures must be of a tensorial nature, i.e., must present specific invariance characteristics. This requirement is satisfied if and only if the deformation measures are parallel to the eigenvector of the motion tensor.

1.
Anand
,
L.
, and
On
,
H.
, 1979, “
Hencky’s Approximate Strain-Energy Function for Moderate Deformations
,”
ASME J. Appl. Mech.
0021-8936,
46
, pp.
78
82
.
2.
Anand
,
L.
, 1986, “
Moderate Deformations in Extension-Torsion of Incompressible Isotropic Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
34
(
3
), pp.
293
304
.
3.
Degener
,
M.
,
Hodges
,
D. H.
, and
Petersen
,
D.
, 1988, “
Analytical and Experimental Study of Beam Torsional Stiffness With Large Axial Elongation
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
171
178
.
4.
Ledesma
,
R.
,
Ma
,
Z. -D.
,
Hulbert
,
G.
, and
Wineman
,
A.
, 1996, “
A Nonlinear Viscoelastic Bushing Element in Multibody Dynamics
,”
Comput. Mech.
0178-7675,
17
(
5
), pp.
287
296
.
5.
Kadlowec
,
J.
,
Wineman
,
A.
, and
Hulbert
,
G.
, 2003, “
Elastomer Bushing Response: Experiments and Finite Element Modeling
,”
Acta Mech.
0001-5970,
163
(
5
), pp.
25
38
.
6.
Masarati
,
P.
, and
Morandini
,
M.
, 2010, “
Intrinsic Deformable Joints
,”
Multibody Syst. Dyn.
1384-5640,
23
(
4
), pp.
361
386
.
7.
2007, MSC/ADAMS User’s Manual.
8.
ABAQUS Theory Manual, ABAQUS Version 6.7 edition.
9.
Bauchau
,
O. A.
, and
Li
,
L. H.
, “
Tensorial Parameterization of Rotation and Motion
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423, in press.
10.
Bauchau
,
O. A.
, 2010,
Flexible Multibody Dynamics
,
Springer-Verlag
,
Berlin
.
11.
Flügge
,
W.
, 1972,
Tensor Analysis and Continuum Mechanics
,
Springer-Verlag
,
New York
.
12.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
, 2000, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
1384-5640,
4
, pp.
129
193
.
13.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Bauchau
,
O. A.
, and
Craig
,
J. I.
, 2009,
Structural Analysis With Application to Aerospace Structures
,
Springer
,
New York
.
15.
Bauchau
,
O. A.
, and
Trainelli
,
L.
, 2003, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
0924-090X,
32
(
1
), pp.
71
92
.
16.
Kane
,
T. R.
, 1968,
Dynamics
,
Holt, Rinehart and Winston
,
New York
.
17.
Argyris
,
J.
, 1982, “
An Excursion Into Large Rotations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
(
1–3
), pp.
85
155
.
18.
Shuster
,
M. D.
, 1993, “
A Survey of Attitude Representations
,”
J. Astronaut. Sci.
0021-9142,
41
(
4
), pp.
439
517
.
19.
Ibrahimbegović
,
A.
, 1997, “
On the Choice of Finite Rotation Parameters
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
149
, pp.
49
71
.
20.
Angeles
,
J.
, 1993, “
On Twist and Wrench Generators and Annihilators
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
(
NATO ASI Series
),
M. F. O.
Seabra Pereira
and
J. A. C.
Ambrosio
, eds.,
Kluwer Academic
,
Dordrecht
, pp.
379
411
.
21.
Merlini
,
T.
, and
Morandini
,
M.
, 2004, “
The Helicoidal Modeling in Computational Finite Elasticity. Part I: Variational Formulation
,”
Int. J. Solids Struct.
0020-7683,
41
(
18–19
), pp.
5351
5381
.
22.
Pennestrì
,
E.
, and
Stefanelli
,
R.
, 2007, “
Linear Algebra and Numerical Algorithms Using Dual Numbers
,”
Multibody Syst. Dyn.
1384-5640,
18
, pp.
323
344
.
23.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
, 2003, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
0924-090X,
33
(
2
), pp.
165
188
.
You do not currently have access to this content.