An explicit difference method is considered for solving fractional diffusion and fractional diffusion-wave equations where the time derivative is a fractional derivative in the Caputo form. For the fractional diffusion equation, the L1 discretization formula of the fractional derivative is employed, whereas the L2 discretization formula is used for the fractional diffusion-wave equation. In both equations, the spatial derivative is approximated by means of the three-point centered formula. The accuracy of the present method is similar to other well-known explicit difference schemes, but its region of stability is larger. The stability analysis is carried out by means of a kind of fractional von Neumann (or Fourier) method. The stability bound so obtained, which is given in terms of the Riemann zeta function, is checked numerically.

1.
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
0370-1573,
339
, pp.
1
77
.
2.
Metzler
,
R.
, and
Klafter
,
J.
, 2004, “
The Restaurant at the End of the Random Walk: Recent Developments in the Description of Anomalous Transport by Fractional Dynamics
,”
J. Phys. A
0305-4470,
37
, pp.
R161
R208
.
3.
Barkai
,
E.
,
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
From Continuous Time Random Walks to the Fractional Fokker-Planck Equation
,”
Phys. Rev. E
1063-651X,
61
, pp.
132
138
.
4.
Barkai
,
E.
, 2001, “
Fractional Fokker-Planck Equation, Solution, and Application
,”
Phys. Rev. E
1063-651X,
63
, p.
046118
.
5.
Yuste
,
S. B.
, and
Lindenberg
,
K.
, 2005, “
Trapping Reactions With Subdiffusive Traps and Particles Characterized by Different Anomalous Diffusion Exponents
,”
Phys. Rev. E
1063-651X,
72
, p.
061103
.
6.
Yuste
,
S. B.
,
Ruiz-Lorenzo
,
J. J.
, and
Lindenberg
,
K.
, 2006, “
Target Problem With Evanescent Subdiffusive Traps
,”
Phys. Rev. E
1063-651X,
74
, p.
046119
.
7.
Yuste
,
S. B.
, and
Lindenberg
,
K.
, 2007, “
Subdiffusive Target Problem: Survival Probability
,”
Phys. Rev. E
1063-651X,
76
, p.
051114
.
8.
2008,
Anomalous Transport: Foundations and Applications
,
R.
Klages
,
G.
Radons
, and
I. M.
Sokolov
, eds.,
Wiley-VCH
,
Weinheim
.
9.
Mainardi
,
F.
, 1995, “
Fractional Diffusive Waves in Viscoeslastic Solids
,”
Nonlinear Waves in Solids
,
J. L.
Wegner
and
F. R.
Norwood
, eds.,
ASME/AMR
,
Fairfield, NJ
, pp.
93
97
.
10.
Mainardi
,
F.
, 1996, “
Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena
,”
Chaos, Solitons Fractals
0960-0779,
7
, pp.
1461
1477
.
11.
Mainardi
,
F.
, and
Paradisi
,
P.
, 1997, “
A Model of Diffusive Waves in Viscoelasticity Based on Fractional Calculus
,”
Proceedings of the 36th Conference on Decision and Control
,
O. R.
Gonzales
, ed., San Diego, CA, pp.
4961
4966
.
12.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
13.
2000,
Applications of Fractional Calculus in Physics
,
R.
Hilfer
, ed.,
World Scientific
,
Singapore
.
14.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
, 2006,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
.
15.
Ray
,
S. S.
, 2007, “
Exact Solutions for Time-Fractional Diffusion-Wave Equations by Decomposition Method
,”
Phys. Scr.
0031-8949,
75
, pp.
53
61
.
16.
Momani
,
S.
,
Odibat
,
Z.
, and
Erturk
,
V. S.
, 2007, “
Generalized Differential Transform Method for Solving a Space and Time Fractional Diffusion-Wave Equations
,”
Phys. Lett. A
0375-9601,
370
, pp.
379
387
.
17.
Jafari
,
H.
, and
Momani
,
S.
, 2007, “
Solving Fractional Diffusion and Wave Equations by Modified Homotopy Perturbation Method
,”
Phys. Lett. A
0375-9601,
370
, pp.
388
396
.
18.
Agrawal
,
O. M. P.
, 2002, “
Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
145
155
.
19.
Lynch
,
V. E.
,
Carreras
,
B. A.
,
del-Castillo-Negrete
,
D.
,
Ferreira-Mejias
,
K. M.
, and
Hicks
,
H. R.
, 2003, “
Numerical Methods for the Solution of Partial Differential Equations of Fractional Order
,”
J. Comput. Phys.
0021-9991,
192
, pp.
406
421
.
20.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
, and
Turner
,
I.
, 2006, “
A Fractional-Order Implicit Difference Approximation for the Space-Time Fractional Diffusion Equation
,”
ANZIAM J.
1445-8735,
47
, pp.
C48
C68
.
21.
Langlands
,
T. A. M.
, and
Henry
,
B. I.
, 2005, “
The Accuracy and Stability of an Implicit Solution Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
0021-9991,
205
, pp.
719
736
.
22.
Ciesielski
,
M.
, and
Leszczynski
,
J.
, 2006, “
Numerical Treatment of an Initial-Boundary Value Problem for Fractional Partial Differential Equations
,”
Signal Process.
0165-1684,
86
, pp.
2619
2631
.
23.
Gorenflo
,
R.
, and
Abdel-Rehim
,
E. A.
, 2007, “
Convergence of the Grünwald-Letnikov Scheme for Time-Fractional Diffusion
,”
J. Comput. Appl. Math.
0377-0427,
205
, pp.
871
881
.
24.
Chen
,
C. -M.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
, 2007, “
A Fourier Method for the Fractional Diffusion Equation Describing Sub-Diffusion
,”
J. Comput. Phys.
0021-9991,
227
, pp.
886
897
.
25.
Liu
,
F.
,
Yang
,
C.
, and
Burrage
,
K.
, 2009, “
Numerical Method and Analytical Technique of the Modified Anomalous Subdiffusion Equation With a Nonlinear Source Term
,”
Comput. Appl. Math.
0101-8205,
231
, pp.
160
176
.
26.
Chen
,
C. -M.
,
Liu
,
F.
, and
Anh
,
V.
, 2009, “
A Fourier Method and an Extrapolation Technique for Stokes’ First Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative
,”
J. Comput. Appl. Math.
0377-0427,
223
, pp.
777
789
.
27.
Liu
,
F.
,
Zhuang
,
P.
,
Anh
,
V.
,
Turner
,
I.
, and
Burrage
,
K.
, 2007, “
Stability and Convergence of the Difference Methods for the Space–Time Fractional Advection–Diffusion Equation
,”
Appl. Math. Comput.
0096-3003,
191
, pp.
12
20
.
28.
Su
,
L.
,
Wang
,
W.
, and
Xu
,
Q.
, 2010, “
Finite Difference Methods for Fractional Dispersion Equations
,”
Appl. Math. Comput.
0096-3003,
216
, pp.
3329
3334
.
29.
Du
,
R.
,
Cao
,
W. R.
, and
Sun
,
Z. Z.
, 2010, “
A Compact Difference Scheme for the Fractional Diffusion-Wave Equation
,”
Appl. Math. Model.
0307-904X,
34
, pp.
2998
3007
.
30.
Murio
,
D. A.
, 2008, “
Implicit Finite Difference Approximation for Time Fractional Diffusion Equations
,”
Comput. Math. Appl.
0898-1221,
56
, pp.
1138
1145
.
31.
Sun
,
Z. -Z.
, and
Wu
,
X.
, 2006, “
A Fully Discrete Difference Scheme for a Diffusion-Wave System
,”
Appl. Numer. Math.
0168-9274,
56
, pp.
193
209
.
32.
Zhuang
,
P.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2008, “
New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
46
, pp.
1079
1095
.
33.
Podlubny
,
I.
,
Chechkin
,
A. V.
,
Skovranek
,
T.
,
Chen
,
Y.
, and
Vinagre Jara
,
B. M.
, 2009, “
Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations
,”
J. Comput. Phys.
0021-9991,
228
, pp.
3137
3153
.
34.
Yuste
,
S. B.
, and
Acedo
,
L.
, 2005, “
On an Explicit Finite Difference Method for Fractional Diffusion Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
42
, pp.
1862
1874
.
35.
Yuste
,
S. B.
, 2006, “
Weighted Average Finite Difference Methods for Fractional Diffusion Equations
,”
J. Comput. Phys.
0021-9991,
216
, pp.
264
274
.
36.
Yuste
,
S. B.
, and
Quintana Murillo
,
J.
, 2009, “
On Three Explicit Difference Schemes for Fractional Diffusion and Diffusion-Wave Equations
,”
Phys. Scr.
0031-8949,
T136
, p.
014025
.
37.
Morton
,
K. W.
, and
Mayers
,
D. F.
, 1994,
Numerical Solution of Partial Differential Equations
,
Cambridge University Press
,
Cambridge, UK
.
38.
Mainardi
,
F.
, and
Gorenflo
,
R.
, 2000, “
On Mittag-Leffler Type Functions in Fractional Evolution Processes
,”
J. Comput. Appl. Math.
0377-0427,
118
, pp.
283
299
.
39.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
40.
Gorenflo
,
R.
,
Mainardi
,
F.
,
Moretti
,
D.
, and
Paradisi
,
P.
, 2002, “
Time-Fractional Diffusion: A Discrete Random Walk Approach
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
129
143
.
You do not currently have access to this content.