Redundancy in the constraining of mechanical systems achieves more stability and larger load capacity for the system, while in actuation it provides better robustness against singularities and higher maneuverability. Few techniques have been developed with the aim to handle redundancy and singularities in dynamics analysis, and further research is still needed in this area. In this paper, we illustrate the concept of actuating and passive constraints. Then, we expand on the existing penalty techniques by incorporating the concept of actuating and passive constraints to present a penalty formulation that is capable of efficiently handling singularities and redundancy in constraining and actuation and can carry out either forward or inverse dynamics analysis of mechanical systems. As such, the proposed approach is referred to as the actuating-passive constraints penalty approach.

1.
Kövecses
,
J.
, and
Piedboeuf
,
J. -C.
, 2003, “
A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems
,”
Proceedings of ASME Design Engineering Technical Conference
, Chicago, IL, Sep. 2–6, Paper No. DETC2003/VIB-48314.
2.
Aghili
,
F.
, 2003, “
Inverse and Direct Dynamics of Constrained Multibody Systems Based on Orthogonal Decomposition of Generalized Force
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, Sep. 14–19.
3.
Bayo
,
E.
,
Jimenez
,
J. M.
,
Serna
,
M. A.
, and
Bastero
,
J. M.
, 1994, “
Penalty Based Hamiltonian Equations for Dynamic Analysis of Constrained Mechanical Systems
,”
Mech. Mach. Theory
0094-114X,
29
, pp.
725
737
.
4.
Blajer
,
W.
, 2002, “
Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
141
159
.
5.
Wojtyra
,
M.
, and
Fraczek
,
J.
, 2007, “
Reactions of Redundant or Singular Constraints in Mechanisms With Rigid Links
,”
Proceedings of the 12th IFToMM World Congress
, Besancon, France, Jun. 18–21.
6.
Komistek
,
R. D.
,
Kane
,
T. R.
,
Mahfouz
,
M.
,
Ochoa
,
J. A.
, and
Dennis
,
D. A.
, 2005, “
Knee Mechanics: A Review of Past and Present Techniques to Determine In Vivo Loads
,”
J. Biomech.
0021-9290,
38
, pp.
215
228
.
7.
Hatze
,
H.
, 2002, “
The Fundamental Problem of Myoskeletal Inverse Dynamics and Its Implications
,”
J. Biomech.
0021-9290,
35
, pp.
109
115
.
8.
Brand
,
R. A.
,
Petersen
,
D. R.
,
Davy
,
D. T.
,
Kotzar
,
G. M.
,
Heiple
,
K. G.
, and
Goldberg
,
V. M.
, 1994, “
Comparison of Hip Force Calculations and Measurements in the Same Patient
,”
J. Arthroplasty
0883-5403,
9
, pp.
45
51
.
9.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M. A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamics Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
10.
García de Jalón
,
J.
, and
Bayo
,
E.
, 1994, “
Kinematic and Dynamic Simulation of Multibody Systems
,”
The Real-Time Challenge
(
Mechanical Engineering Series
),
Springer-Verlag
,
New York
.
11.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
113
130
.
12.
Cuadrado
,
J.
,
Cardenal
,
J.
, and
Bayo
,
E.
, 1997, “
Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
259
280
.
13.
Nikravesh
,
P.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Ambrosio
,
J.
, and
Kecskeméthy
,
A.
, 2007, “
Multibody Dynamics of Biomechanical Models for Human Motion via Optimization
,”
Multibody Dynamics: Computational Methods and Applications
,
J. C.
García Orden
J. M.
Goicolea
, and
J.
Cuadrado
, eds.,
Springer
,
The Netherlands
, pp.
245
272
.
15.
Arnold
,
V. I.
, 1989,
Mathematical Methods of Classical Mechanics
,
2nd ed.
,
Springer-Verlag
,
New York
.
16.
Gauss
,
C. F.
, 1829, “
Ueber ein allgemeines Grundgesetz der Mechanik
,”
J. Reine Angew. Math.
0075-4102,
4
, pp.
232
235
.
17.
Redon
,
S.
,
Kheddar
,
A.
, and
Coquillart
,
S.
, 2002, “
Gauss’ Least Constraints Principle and Rigid Body Simulations
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Washington, D.C., May 11–15, pp.
517
522
.
18.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
19.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1996,
Analytical Dynamics: A New Approach
,
1st ed.
,
Cambridge University
,
Cambridge
.
20.
Fan
,
Y.
,
Kalaba
,
R.
,
Natsuyama
,
H.
, and
Udwadia
,
F.
, 2005, “
Reflections on Gauss Principle of Least Constraint
,”
J. Optim. Theory Appl.
0022-3239,
127
(
3
), pp.
475
484
.
21.
Wright
,
S.
, and
Nocedal
,
J.
, 2006,
Numerical Optimization
,
2nd ed.
,
Springer
,
New York
.
22.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061012
.
23.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part II: Imposition of Constraints
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061013
.
24.
Bayo
,
E.
, and
Avello
,
A.
, 1994, “
Singularity-Free Augmented Lagrangian Algorithms for Constrained Multi-Body Dynamics
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
209
231
.
25.
Shabana
,
A.
, 2001,
Computational Dynamics
,
2nd ed.
,
Wiley-InterScience
,
New York
.
26.
Bauchau
,
O. A.
, and
Laulusa
,
A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011004
.
27.
Bauchau
,
O. A.
, and
Laulusa
,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011005
.
28.
Eriten
,
M.
, and
Dankowicz
,
H.
, 2009, “
A Rigorous Dynamical-System-Based Analysis of the Self-Stabilizing Influence of Muscles
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
1
), p.
011011
.
29.
Rodić
,
A.
, 2007, “
Identification of Anthropomorphic Parameters—Kinematical and Dynamic Body-Segment Characteristics
,” Robotics Laboratory, Mihajlo Pupin Institute, Belgrage, Serbia. http://www.institutepupin.com/RnDProfile/robotics/research-topic12.htmlhttp://www.institutepupin.com/RnDProfile/robotics/research-topic12.html
You do not currently have access to this content.