Planetary gears are parametrically excited by the time-varying mesh stiffness that fluctuates as the number of gear tooth pairs in contact changes during gear rotation. At resonance, the resulting vibration causes tooth separation leading to nonlinear effects such as jump phenomena and subharmonic resonance. This work examines the nonlinear dynamics of planetary gears by numerical and analytical methods over the meaningful mesh frequency ranges. Concise, closed-form approximations for the dynamic response are obtained by perturbation analysis. The analytical solutions give insight into the nonlinear dynamics and the impact of system parameters on dynamic response. Correlation between the amplitude of response and external torque demonstrates that tooth separation occurs even under large torque. The harmonic balance method with arclength continuation confirms the perturbation solutions. The accuracy of the analytical and harmonic balance solutions is evaluated by parallel finite element and numerical integration simulations.

1.
Botman
,
M.
, 1980, “
Vibration Measurements on Planetary Gears of Aircraft Turbine Engines
,”
J. Aircr.
0021-8669,
17
(
5
), pp.
351
357
.
2.
Kahraman
,
A.
, and
Blankenship
,
G. W.
, 1996, “
Gear Dynamics Experiments, Part-I: Characterization of Forced Response
,”
ASME Power Transmission and Gearing Conference
, San Diego, CA.
3.
August
,
R.
, and
Kasuba
,
R.
, 1986, “
Torsional Vibrations and Dynamic Loads in a Basic Planetary Gear System
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
108
, pp.
348
353
.
4.
Velex
,
P.
, and
Flamand
,
L.
, 1996, “
Dynamic Response of Planetary Trains to Mesh Parametric Excitations
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
7
14
.
5.
Lin
,
J.
, and
Parker
,
R. G.
, 2002, “
Planetary Gear Parametric Instability Caused by Mesh Stiffness Variation
,”
J. Sound Vib.
0022-460X,
249
(
1
), pp.
129
145
.
6.
Von Groll
,
G.
, and
Ewins
,
D. J.
, 2001, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
0022-460X,
241
(
2
), pp.
223
233
.
7.
Raghothama
,
A.
, and
Narayanan
,
S.
, 1999, “
Bifurcation and Chaos in Geared Rotor Bearing System by Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
226
(
3
), pp.
469
492
.
8.
Padmanabhan
,
C.
, and
Singh
,
R.
, 1995, “
Analysis of Periodically Excited Non-Linear Systems by a Parametric Continuation Technique
,”
J. Sound Vib.
0022-460X,
184
(
1
), pp.
35
58
.
9.
Lin
,
J.
, and
Parker
,
R. G.
, 1999, “
Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
316
321
.
10.
Lin
,
J.
, and
Parker
,
R. G.
, 2000, “
Structured Vibration Characteristics of Planetary Gears With Unequally Spaced Planets
,”
J. Sound Vib.
0022-460X,
233
, pp.
921
928
.
11.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
, 2007, “
Nonlinear Dynamics of Planetary Gears Using Analytical and Finite Element Models
,”
J. Sound Vib.
0022-460X,
302
(
3
), pp.
577
595
.
12.
Parker
,
R. G.
, 2000, “
A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration
,”
J. Sound Vib.
0022-460X,
236
(
4
), pp.
561
573
.
13.
Ambarisha
,
V. K.
, and
Parker
,
R. G.
, 2006, “
Suppression of Planet Mode Response in Planetary Gear Dynamics Through Mesh Phasing
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
133
142
.
14.
Wu
,
X.
, and
Parker
,
R. G.
, 2008, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl. Mech.
0021-8936,
75
(
3
), p.
031014
.
15.
Kiracofe
,
D. R.
, and
Parker
,
R. G.
, 2007, “
Structured Vibration Modes of General Compound Planetary Gear Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
129
, pp.
1
16
.
16.
Kahraman
,
A.
, 1994, “
Load Sharing Characteristics of Planetary Transmissions
,”
Mech. Mach. Theory
0094-114X,
29
, pp.
1151
1165
.
17.
Sun
,
T.
, and
Hu
,
H. Y.
, 2003, “
Nonlinear Dynamics of a Planetary Gear System With Multiple Clearances
,”
Mech. Mach. Theory
0094-114X,
38
(
12
), pp.
1371
1390
.
18.
Parker
,
R. G.
,
Agashe
,
V.
, and
Vijayakar
,
S. M.
, 2000, “
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
,”
ASME J. Mech. Des.
0161-8458,
122
(
3
), pp.
304
310
.
19.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
, 2000, “
Non-Linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons
,”
J. Sound Vib.
0022-460X,
237
(
3
), pp.
435
455
.
20.
Abousleiman
,
V.
, and
Velex
,
P.
, 2006, “
A Hybrid 3D Finite Element/Lumped Parameter Model for Quasi-Static and Dynamic Analyses of Planetary/Epicyclic Gear Sets
,”
Mech. Mach. Theory
0094-114X,
41
(
6
), pp.
725
748
.
21.
Eritenel
,
T.
, and
Parker
,
R. G.
, 2009, “
Modal Properties of Three-Dimensional Helical Planetary Gears
,”
J. Sound Vib.
0022-460X,
325
(
1–2
), pp.
397
420
.
22.
Abousleiman
,
V.
,
Velex
,
P.
, and
Becquerelle
,
S.
, 2007, “
Modeling of Spur and Helical Gear Planetary Drives With Flexible Ring Gears and Planet Carriers
,”
ASME J. Mech. Des.
0161-8458,
129
(
1
), pp.
95
106
.
23.
Liu
,
G.
, and
Parker
,
R. G.
, 2008, “
Nonlinear Dynamics of Idler Gear Systems
,”
Nonlinear Dyn.
0924-090X,
53
(
4
), pp.
345
367
.
24.
Parker
,
R. G.
, and
Lin
,
J.
, 2004, “
Mesh Phasing Relationships in Planetary and Epicyclic Gears
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
365
370
.
25.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
26.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
, 2005, “
Super- and Sub-Harmonic Response Calculations for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
281
(
3–5
), pp.
965
993
.
27.
Zhu
,
F.
, and
Parker
,
R. G.
, 2005, “
Non-Linear Dynamics of a One-Way Clutch in Belt-Pulley Systems
,”
J. Sound Vib.
0022-460X,
279
(
1–2
), pp.
285
308
.
28.
Baker
,
G. R.
, and
Overman
,
E. A.
, 2000,
The Art of Scientific Computing
, Draft edition, The Ohio State University bookstore.
29.
Blair
,
K. B.
,
Krousgrill
,
C. M.
, and
Farris
,
T. N.
, 1997, “
Harmonic Balance and Continuation Techniques in the Dynamics Analysis of Duffing’s Equation
,”
J. Sound Vib.
0022-460X,
202
(
5
), pp.
717
731
.
30.
Sundararajan
,
P.
, and
Noah
,
S. T.
, 1998, “
An Algorithm for Response and Stability of Large Order Non-Linear Systems—Application to Rotor Systems
,”
J. Sound Vib.
0022-460X,
214
(
4
), pp.
695
723
.
31.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
32.
Jordan
,
D. W.
, and
Smith
,
P.
, 2007,
Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers
,
4th ed.
,
Oxford
,
New York
.
You do not currently have access to this content.