This paper presents and discusses the results obtained from a parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. The main purpose of this work is to analyze the influence of the variables that affect the violation of constraints, chiefly the values of the Baumgarte parameters, the integration method, the time step, and the quality of the initial conditions for the positions. In the sequel of this process, the formulation of the rigid multibody systems is reviewed. The generalized Cartesian coordinates are selected as the variables to describe the bodies’ degrees of freedom. The formulation of the equations of motion uses the Newton–Euler approach, augmented with the constraint equations that lead to a set of differential algebraic equations. Furthermore, the main issues related to the stabilization of the violation of constraints based on the Baumgarte approach are revised. Special attention is also given to some techniques that help in the selection process of the values of the Baumgarte parameters, namely, those based on the Taylor’s series and the Laplace transform technique. Finally, a slider-crank mechanism with eccentricity is considered as an example of application in order to illustrate how the violation of constraints can be affected by different factors.

1.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Shabana
,
A. A.
, 1989,
Dynamics of Multibody Systems
,
Wiley
,
New York
.
3.
Schiehlen
,
W.
, 1990,
Multibody Systems Handbook
,
Springer-Verlag
,
Berlin
.
4.
Amirouche
,
F. M. L.
, 1992,
Computational Methods for Multibody Dynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
5.
Garcia de Jálon
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
,
Springer-Verlag
,
New York
.
6.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
7.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
, 1994, “
Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations
,”
J. Mech. Des.
1050-0472,
116
, pp.
1058
1064
.
8.
Blajer
,
W.
, 1995, “
An Orthonormal Tangent Space Method for Constrained Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
45
57
.
9.
Fisette
,
P.
, and
Vaneghem
,
B.
, 1996, “
Numerical Integration of Multibody System Dynamic Equations Using the Coordinate Method in an Implicit Newmark Scheme
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
85
105
.
10.
Arabyan
,
A.
, and
Wu
,
F.
, 1998, “
An Improved Formulation for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
1
), pp.
49
69
.
11.
Weijia
,
Z.
,
Zhenkuan
,
P.
, and
Yibing
,
W.
, 2000, “
An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion in Multibody System Dynamics
,”
Appl. Math. Mech.
0253-4827,
21
(
1
), pp.
103
108
.
12.
Neto
,
M. A.
, and
Ambrósio
,
J.
, 2003, “
Stabilization Methods for the Integration of DAE in the Presence of Redundant Constraints
,”
Multibody Syst. Dyn.
1384-5640,
10
, pp.
81
105
.
13.
Tseng
,
F. -C.
,
Ma
,
Z. -D.
, and
Hulbert
,
G. M.
, 2003, “
Efficient Numerical Solution of Constrained Multibody Dynamics Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
439
472
.
14.
Nikravesh
,
P. E.
, 1984, “
Some Methods for Dynamic Analysis of Constrained Mechanical Systems: A Survey
,”
Computer-Aided Analysis and Optimization of Mechanical System Dynamics
,
E. J.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
351
368
.
15.
Gear
,
C. W.
,
Leimkuhler
,
B.
, and
Gupta
,
G. K.
, 1985, “
Automatic Integration of Euler–Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12–13
, pp.
77
90
.
16.
Bauchau
,
O. A.
, 2003, “
A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
3253
3271
.
17.
Borri
,
M.
,
Trainelli
,
L.
, and
Croce
,
A.
, 2006, “
The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
6974
6992
.
18.
Orden
,
J. C. G.
, 2010, “
Energy Considerations for the Stabilization of Constrained Mechanical Systems With Velocity Projection
,”
Nonlinear Dyn.
0924-090X,
60
(
1–2
), pp.
49
62
.
19.
Shabana
,
A. A.
, and
Hussein
,
B. A.
, 2009, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems
,”
J. Sound Vib.
0022-460X,
327
, pp.
557
563
.
20.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
21.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Systems
,”
J. Mech. Des.
1050-0472,
104
, pp.
247
255
.
22.
Bayo
,
E.
,
Garcia de Jálon
,
J.
, and
Serna
,
A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
23.
Park
,
K. C.
, and
Chiou
,
J. C.
, 1988, “
Stabilization of Computational Procedures for Constrained Dynamical Systems
,”
J. Guid. Control Dyn.
0731-5090,
11
, pp.
365
370
.
24.
Rosen
,
A.
, and
Edelstein
,
E.
, 1997, “
Investigation of a New Formulation of the Lagrange Method for Constrained Dynamic Systems
,”
ASME J. Appl. Mech.
0021-8936,
64
, pp.
116
122
.
25.
Lin
,
S.
, and
Hong
,
M.
, 1998, “
Stabilization Method for Numerical Integration of Multibody Mechanical Systems
,”
J. Mech. Des.
1050-0472,
120
, pp.
565
572
.
26.
Blajer
,
W.
, 1999, “
Elimination of Constraint Violation and Accuracy Improvement in Numerical Simulation of Multibody Systems
,”
Proceedings of EUROMECH Colloquium 404, Advances in Computational Multibody Dynamics, IDMEC/IST
,
J.
Ambrósio
and
W.
Schiehlen
, eds., Lisbon, Portugal,
IST Press
,
Lisbon
, pp.
769
787
.
27.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
(
1–2
), pp.
113
130
.
28.
Flores
,
P.
, and
Seabra
,
E.
, 2009, “
Influence of the Baumgarte Parameters on the Dynamics Response of Multibody Mechanical Systems
,”
Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and Algorithms
1492-8760,
16
(
3
), pp.
415
432
.
29.
Flores
,
P.
,
Pereira
,
R.
,
Machado
,
M.
, and
Seabra
,
E.
, 2008, “
Investigation on the Baumgarte Stabilization Method for Dynamic Analysis of Constrained Multibody Systems
,”
Proceedings of EUCOMES08, The Second European Conference on Mechanism Science
,
M.
Ceccarelli
, ed.,
Springer
,
New York
, pp.
305
312
.
30.
Zwillinger
,
D.
, 1997,
Handbook of Differential Equations
,
3rd ed.
,
Academic
,
Boston
.
31.
Polyanin
,
A. D.
, and
Zaitsev
,
V. F.
, 2003,
Handbook of Exact Solutions for Ordinary Differential Equations
,
2nd ed.
,
Chapman and Hall/CRC Press
,
Boca Raton
.
32.
Shampine
,
L.
, and
Gordon
,
M.
, 1975,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco
.
33.
Hildebrand
,
F. B.
, 1974,
Introduction to Numerical Analysis
,
2nd ed.
,
McGraw-Hill
,
New York
.
34.
Leader
,
J. J.
, 2004,
Numerical Analysis and Scientific Computation
,
Addison-Wesley
,
London
.
35.
Cochin
,
I.
, and
Cadwallender
,
W.
, 1997,
Analysis and Design of Dynamic Systems
,
3rd ed.
,
Addison-Wesley
,
New Jersey
.
36.
Nikravesh
,
P. E.
, 2008,
Planar Multibody Dynamics: Formulation, Programming, and Applications
,
CRC Press
,
London
.
37.
Nikravesh
,
P. E.
, 2007, “
Initial Condition Correction in Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
18
, pp.
107
115
.
You do not currently have access to this content.