An extended car-following model is proposed in this paper by using the generalized optimal velocity function and considering the multivelocity differences. The stability condition of the model is derived by using the linear stability theory. From the reductive perturbation method and nonlinear analysis, the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the traffic behaviors near the neutral stability line and around the critical point, respectively. The corresponding soliton wave and kink-antikink soliton solution are used to describe the different traffic jams. It is found that the generalized optimal velocity function and multivelocity differences consideration can further stabilize traffic flow and suppress traffic jams. The theoretical results are well verified through numerical simulations.

1.
Lighthill
,
M. J.
, and
Whitham
,
G. B.
, 1955, “
On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads
,”
Proc. R. Soc. London, Ser. A
0950-1207,
229
, pp.
317
345
.
2.
Pipes
,
L. A.
, 1953, “
An Operational Analysis of Traffic Dynamics
,”
J. Appl. Phys.
0021-8979,
24
, pp.
274
281
.
3.
Gazis
,
D. C.
,
Herman
,
R.
, and
Potts
,
R. B.
, 1961, “
Nonlinear Follow-the-Leader Models of Traffic Flow
,”
Oper. Res.
0030-364X,
9
, pp.
545
567
.
4.
Krauss
,
S.
,
Wagner
,
P.
, and
Gawron
,
C.
, 1996, “
Continuous Limit of the Nagel-Schreckenberg Model
,”
Phys. Rev. E
1063-651X,
54
, pp.
3707
3712
.
5.
Newell
,
G. F.
, 1961, “
Nonlinear Effects in the Dynamics of Car Following
,”
Oper. Res.
0030-364X,
9
, pp.
209
229
.
6.
Whitham
,
G. B.
, 1990, “
Exact Solutions for a Discrete System Arising in Traffic Flow
,”
Proc. R. Soc. London, Ser. A
0950-1207,
428
, pp.
49
69
.
7.
Bando
,
M.
,
Hasebe
,
K.
,
Nakayama
,
A.
,
Shibata
,
A.
, and
Sugiyama
,
Y.
, 1995, “
Dynamical Model of Traffic Congestion and Numerical Simulation
,”
Phys. Rev. E
1063-651X,
51
, pp.
1035
1042
.
8.
Helbing
,
D.
, and
Tilch
,
B.
, 1998, “
Generalized Force Model of Traffic Dynamics
,”
Phys. Rev. E
1063-651X,
58
, pp.
133
138
.
9.
Jiang
,
R.
,
Wu
,
Q. S.
, and
Zhu
,
Z. J.
, 2001, “
Full Velocity Difference Model for a Car-Following Theory
,”
Phys. Rev. E
1063-651X,
64
, p.
017101
.
10.
Nagatani
,
T.
, 1999, “
Stabilization and Enhancement of Traffic Flow by the Next-Nearest-Neighbor Interaction
,”
Phys. Rev. E
1063-651X,
60
, pp.
6395
6401
.
11.
Sawada
,
S.
, 2002, “
Generalized Optimal Velocity Model for Traffic Flow
,”
Int. J. Mod. Phys. C
0129-1831,
13
, pp.
1
12
.
12.
Sawada
,
S.
, 2001, “
Nonlinear Analysis of a Differential-Difference Equation With Next-Nearest-Neighbour Interaction for Traffic Flow
,”
J. Phys. A
0305-4470,
34
, pp.
11253
11259
.
13.
Orosz
,
G.
,
Wilson
,
R. E.
, and
Krauskopf
,
B.
, 2004, “
Global Bifurcation Investigation of an Optimal Velocity Traffic Model With Driver Reaction Time
,”
Phys. Rev. E
1063-651X,
70
, p.
026207
.
14.
Nagatani
,
T.
, 2002, “
The Physics of Traffic Jams
,”
Rep. Prog. Phys.
0034-4885,
65
, pp.
1331
1386
.
15.
Pursula
,
M.
, and
Geograph
,
J.
, 1999, “
Simulation of Traffic Systems—An Overview
,”
J. Geogr. Inf. Decis. Anal.
1480-8943,
3
, pp.
1
8
.
16.
Figueiredo
,
L.
,
Machado
,
J. A. T.
, and
Ferreira
,
J. R.
, 2003, “
Simulation and Dynamical Analysis of Freeway Traffic
,”
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
, Washington, DC, pp.
3607
3612
.
17.
Figueiredo
,
L.
,
Machado
,
J. A. T.
, and
Ferreira
,
J. R.
, 2004, “
Dynamical Analysis of Freeway Traffic
,”
IEEE Trans. Intell. Transp. Syst.
1524-9050,
5
, pp.
259
266
.
18.
Chowdhury
,
D.
,
Santen
,
L.
, and
Schadschneider
,
A.
, 2000, “
Statistical Physics of Vehicular Traffic and Some Related Systems
,”
Phys. Rep.
0370-1573,
329
, pp.
199
329
.
19.
Tatsumi
,
T.
, and
Kida
,
S.
, 1972, “
Statistical Mechanics of the Burgers Model of Turbulence
,”
J. Fluid Mech.
0022-1120,
55
, pp.
659
675
.
20.
Kurtze
,
D. A.
, and
Hong
,
D. C.
, 1995, “
Traffic Jams, Granular Flow, and Soliton Selection
,”
Phys. Rev. E
1063-651X,
52
, pp.
218
221
.
21.
Komatsu
,
T. S.
, and
Sasa
,
S.
, 1995, “
Kink Soliton Characterizing Traffic Congestion
,”
Phys. Rev. E
1063-651X,
52
, pp.
5574
5582
.
22.
Muramatsu
,
M.
, and
Nagatani
,
T.
, 1999, “
Soliton and Kink Jams in Traffic Flow With Open Boundaries
,”
Phys. Rev. E
1063-651X,
60
, pp.
180
187
.
23.
Ge
,
H. X.
,
Dai
,
S. Q.
,
Dong
,
L. Y.
, and
Xue
,
Y.
, 2004, “
Stabilization Effect of Traffic Flow in an Extended Car-Following Model Based on an Intelligent Transportation System Application
,”
Phys. Rev. E
1063-651X,
70
, p.
066134
.
24.
Ge
,
H. X.
,
Cheng
,
R. J.
, and
Dai
,
S. Q.
, 2005, “
KdV and Kink-Antikink Solitons in Car-Following Models
,”
Physica A
0378-4371,
357
, pp.
466
476
.
25.
Yu
,
L.
,
Shi
,
Z. K.
, and
Zhou
,
B. C.
, 2008, “
Kink-Antikink Density Wave of an Extended Car-Following Model in a Cooperative Driving System
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
13
, pp.
2167
2176
.
26.
Wang
,
T.
,
Gao
,
Z. Y.
, and
Zhao
,
X. M.
, 2006, “
Multiple Velocity Difference Model and Its Stability Analysis
,”
Acta Phys. Sin.
1000-3290,
55
, pp.
634
640
.
27.
Xie
,
D. F.
,
Gao
,
Z. Y.
, and
Zhao
,
X. M.
, 2008, “
Stabilization of Traffic Flow Based on the Multiple Information of Preceding Cars
,”
Comm. Comp. Phys.
1815-2406,
3
, pp.
899
912
.
You do not currently have access to this content.