We present an optimization procedure that uses the Taguchi method to maximize the mean stiffness and workspace of a redundantly actuated parallel mechanism at the same time. The Taguchi method is used to separate the more influential and controllable variables from the less influential ones among kinematic parameters in workspace analysis and stiffness analysis. In the first stage of optimization, the number of experimental variables is reduced by the response analysis. Quasi-optimal kinematic parameter group is obtained in the second stage of optimization after the response analysis. As a validation of the suggested procedure, the kinematic parameters of a planar 2-DOF parallel manipulator are optimized, which optimization procedure is used to investigate the optimal kinematic parameter groups between the length of the link and the stiffness.

1.
Park
,
F. C.
, and
Kim
,
J. W.
, 1999, “
Singularity Analysis of Closed Kinematic Chain
,”
ASME J. Mech. Des.
0161-8458,
121
(
1
), pp.
32
38
.
2.
Chakarov
,
D.
, 2004, “
Study of the Antagonistic Stiffness of Parallel Manipulators With Actuation Redundancy
,”
Mech. Mach. Theory
0094-114X,
39
, pp.
583
601
.
3.
Kim
,
S.
,
In
,
W.
,
Yim
,
H.
,
Jeong
,
J. I.
,
Park
,
F. C.
, and
Kim
,
J.
, 2007, “
Stiffness Enhancement of a Redundantly Actuated Parallel Manipulator Using Internal Preload: Application to a 2-d.o.f Parallel Mechanism
,”
Asian Symposium for Precision Engineering and Nanotechnology
.
4.
Laycock
,
S. D.
, and
Day
,
A. M.
, 2003, “
Recent Developments and Applications of Haptic Devices
,”
Comput. Graph. Forum
1067-7055,
22
, pp.
117
132
.
5.
Birglen
,
L.
,
Gosselin
,
C.
,
Pouliot
,
N.
,
Monsarrat
,
B.
, and
Laliberté
,
T.
, 2002, “
SHaDe, A New 3-DOF Haptic Device
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
2
), pp.
166
175
.
6.
Siva
,
K. V.
,
Dumbreck
,
A. A.
,
Fischer
,
P. J.
, and
Abel
,
E.
, 1988, “
Development of a General Purpose Hand Controller for Advanced Teleoperation
,”
Proceedings of the International Symposium on Teleoperation and Control
, pp.
277
290
.
7.
Xu
,
Q.
, and
Li
,
Y.
, 2006, “
Stiffness Optimization of a 3-DOF Parallel Kinematic Machine Using Particle Swarm Optimization
,”
Proceedings of the IEEE, International Conference on Robotics and Biomimetics
, pp.
1169
1174
.
8.
Xu
,
Q.
, and
Li
,
Y.
, 2008, “
An Investigation on Mobility and Stiffness of a 3-DOF Translational Parallel Manipulator via Screw Theory
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
24
(
3
), pp.
402
414
.
9.
Lee
,
J. H.
,
Yi
,
B. J.
,
Oh
,
S. R.
, and
Suh
,
I. H.
, 1998, “
Optimal Design of a Five-Bar Finger With Redundant Actuation
,”
Proceedings of the IEEE, International Conference on Robotics and Automation
, pp.
2068
2074
.
10.
Liu
,
X. -J.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2006, “
Kinematics, Singularity and Workspace of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
145
169
.
11.
Liu
,
X. -J.
,
Wang
,
J.
, and
Pritschow
,
G.
, 2006, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
119
144
.
12.
Lee
,
Y. H.
,
Han
,
Y.
,
Iurascu
,
C. C.
, and
Park
,
F. C.
, 2002, “
Simulation-Based Actuator Selection for Redundantly Actuated Robot Mechanisms
,”
J. Rob. Syst.
0741-2223,
19
(
8
), pp.
379
390
.
13.
Lee
,
K. H.
, and
Kim
,
J.
, 2000, “
Controller Gain Tuning of a Simultaneous Multi-Axis PID Control System Using the Taguchi Method
,”
Control Engineering Practice
,
8
(
8
), pp.
949
958
.
14.
Rout
,
B. K.
, and
Mittal
,
R. K.
, 2008, “
Parametric Design Optimization of 2-DOF R-R Planar Manipulator—A Design of Experiment Approach
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
24
, pp.
239
248
.
15.
Garg
,
V.
,
Nokleby
,
S. B.
, and
Carretero
,
J. A.
, 2009, “
Wrench Capability Analysis of Redundantly Actuated Spatial Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
44
, pp.
1070
1081
.
16.
Nokleby
,
S. B.
,
Fisher
,
R.
,
Podhorodeski
,
R. P.
, and
Firmani
,
F.
, 2005, “
Force Capabilities of Redundantly-Actuated Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
40
, pp.
578
599
.
17.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
18.
Peace
,
G. S.
, 1993,
Taguchi Methods—A Hands On Approach
,
Addison-Wesley
,
New York
.
You do not currently have access to this content.