This work is devoted to a comparison of different methods determining stop-bands in 1D and 2D periodic heterogeneous media. For a 1D case, the well-known dispersion equation is studied via asymptotic approach. In particular, we show how homogenized solutions can be obtained by elementary series used up to any higher-order. We illustrate and discuss a possible application of asymptotic series regarding parameters other than wavelength and frequency. In addition, we study antiplane elastic shear waves propagating in the plane through a spatially infinite periodic composite material consisting of an infinite matrix and a square lattice of circular inclusions. In order to solve the problem, a homogenization method matched with asymptotic solution on the cell with inclusion of the large volume fracture is proposed and successfully applied. First and second approximation terms of the averaging method provide the estimation of the first stop-band. For validity and comparison with other approaches, we have also applied the Fourier method. The Fourier method is shown to work well for relatively small inclusions, i.e., when the inclusion-associated parameters and matrices slightly differ from each other. However, for evidently contrasting structures and for large inclusions, a higher-order homogenization method is advantageous. Therefore, a higher-order homogenization method and the Fourier analysis can be treated as mutually complementary.

1.
Bakhvalov
,
N. S.
, and
Panasenko
,
G. P.
, 1989,
Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in Mechanics of Composite Materials
,
Kluwer
,
Dordrecht
.
2.
Bensoussan
,
A.
,
Lions
,
J. -L.
, and
Papanicolaou
,
G.
, 1978,
Asymptotic Analysis for Periodic Structures
,
North-Holland
,
Amsterdam
.
3.
Bakhvalov
,
N. S.
, and
Eglit
,
M. E.
, 2000, “
Long-Wave Asymptotics With Dispersion for Wave Propagation in Stratified Media. I. Waves Orthogonal to the Layers
,”
Russian J. Numerical Analysis and Mathematical Modelling
,
15
(
1
), pp.
3
14
.
4.
Bakhvalov
,
N. S.
, and
Eglit
,
M. E.
, 2000, “
Long-Wave Asymptotics With Dispersion for Wave Propagation in Stratified Media. II. Waves in Arbitrary Directions
,”
Russian J. Numerical Analysis and Mathematical Modelling
,
15
(
3–4
), pp.
225
236
.
5.
Floquet
,
G.
, 1883, “
Sur les équations différentielles linéaires à coefficients périodiques
,”
Ann. Sci. Ec. Normale Super.
0012-9593, Ser. 2,
12
, pp.
47
88
.
6.
Bloch
,
F.
, 1928, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
0044-3328,
52
, pp.
555
600
.
7.
Bedford
,
A.
, and
Drumheller
,
D. S.
, 1994,
Introduction to Elastic Wave Propagation
,
Wiley
,
New York
.
8.
Boutin
,
C.
, and
Auriault
,
J. L.
, 1993, “
Rayleigh Scattering in Elastic Composite Materials
,”
Int. J. Eng. Sci.
0020-7225,
31
, pp.
1669
1689
.
9.
Kushwaha
,
M. S.
,
Halevi
,
P.
,
Martinez
,
G.
,
Dobrzynski
,
L.
, and
Djafari-Rouhani
,
B.
, 1994, “
Theory of Acoustic Band Structure of Periodic Elastic Composites
,”
Phys. Rev. B
0556-2805,
49
, pp.
2313
2322
.
10.
Tanaka
,
Y.
,
Tomoyasu
,
Y.
, and
Tamura
,
S. -I.
, 2000, “
Band Structure of Acoustic Waves in Phononic Lattices: Two-Dimensional Composites With Large Acoustic Mismatch
,”
Phys. Rev. B
0556-2805,
62
, pp.
7387
7392
.
11.
Sigalas
,
M. M.
, and
Economou
,
E. N.
, 1992, “
Elastic and Acoustic Wave Band Structure
,”
J. Sound Vib.
0022-460X,
158
(
2
), pp.
377
382
.
12.
Sigalas
,
M. M.
, and
Economou
,
E. N.
, 1993, “
Band Structure of Elastic Waves in Two Dimensional Systems
,”
Solid State Commun.
0038-1098,
86
, pp.
141
143
.
13.
Sigalas
,
M. M.
,
Kushwaha
,
M. S.
,
Economou
,
E. N.
,
Kafesaki
,
M.
,
Psarobas
,
I. E.
, and
Steurer
,
W.
, 2005, “
Classical Vibrational Modes in Phononic Lattices: Theory and Experiment
,”
Z. Kristallogr.
0044-2968,
220
(
9–10
), pp.
765
809
.
14.
Movchan
,
A. B.
,
Movchan
,
N. V.
, and
Poulton
,
C. G.
, 2002,
Asymptotic Models of Fields in Dilute and Densely Packed Composites
,
Imperial College
,
London
.
15.
Kafesaki
,
M.
, and
Economou
,
E. N.
, 1999, “
Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites
,”
Phys. Rev. B
0556-2805,
60
, pp.
11993
12001
.
16.
Zhikov
,
V. V.
, 1989, “
Spectral Approach to Asymptotic Diffusion Problems
,”
Diff. Eq.
0012-2661,
25
(
1
), pp.
33
39
.
17.
Jikov
,
V. V.
,
Kozlov
,
S. M.
, and
Oleinik
,
O. A.
, 1994,
Homogenization of Differential Operators and Integral Functionals
,
Springer-Verlag
,
Berlin
.
18.
Allaire
,
G.
, and
Conca
,
C.
, 1998, “
Bloch Wave Homogenization and Spectral Asymptotic Analysis
,”
J. Math. Pures Appl.
0021-7824,
77
(
2
), pp.
153
208
.
19.
Birman
,
M. S.
, and
Suslina
,
T. A.
, 2004, “
Periodic Second-Order Differential Operators. Threshold Properties and Averaging
,”
St. Petersbg. Math. J.
1061-0022,
15
(
5
), pp.
639
714
.
20.
Zhikov
,
V. V.
, 2005, “
On the Spectral Method in Homogenization Theory
,”
Proc. Steklov Inst. Math.
0081-5438,
3
(
250
), pp.
85
94
.
21.
Conca
,
C.
,
Natesan
,
S.
, and
Vanninathan
,
M.
, 2006, “
Numerical Experiments With the Bloch–Floquet Approach in Homogenization
,”
Int. J. Numer. Methods Eng.
0029-5981,
65
(
9
), pp.
1444
1471
.
22.
Smyshlyaev
,
V. P.
, and
Cherednichenko
,
K. D.
, 2000, “
On Rigorous Derivation of Strain Gradient Effects in the Overall Behaviour of Periodic Heterogeneous Media
,”
J. Mech. Phys. Solids
0022-5096,
48
(
6–7
), pp.
1325
1357
.
23.
Zhikov
,
V. V.
, 2005, “
Gaps in the Spectrum of Some Elliptic Operators in Divergent Form With Periodic Coefficients
,”
St. Petersbg. Math. J.
1061-0022,
16
, pp.
773
790
.
24.
Bouchitté
,
G.
, and
Felbacq
,
D.
, 2004, “
Homogenization Near Resonances and Artificial Magnetism From Dielectrics
,”
C. R. Math. Acad. Sci.
0706-1994,
339
(
5
), pp.
377
382
.
25.
Bellieud
,
M.
, and
Gruais
,
I.
, 2005, “
Homogenization of an Elastic Material Reinforced by Very Stiff or Heavy Fibers. Non-Local Effects. Memory Effects
,”
J. Math. Pures Appl.
0021-7824,
84
, pp.
55
96
.
26.
Babych
,
N. O.
,
Kamotski
,
I. V.
, and
Smyshlyaev
,
V. P.
, 2008, “
Homogenization in Periodic Media With Doubly High Contrasts
,”
Networks Heterog. Media
1556-1801,
3
(
3
), pp.
413
436
.
27.
Ávila
,
A.
,
Griso
,
G.
,
Miara
,
B.
, and
Rohan
,
E.
, 2008, “
Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps
,”
Multiscale Model. Simul.
1540-3459,
7
(
1
), pp.
1
21
.
28.
Smyshlyaev
,
V. P.
, 2009, “
Propagation and Localization of Elastic Waves in Highly Anisotropic Composites via Homogenization
,”
Mech. Mater.
0167-6636,
41
, pp.
434
447
.
29.
Cao
,
Y.
,
Hou
,
Z.
, and
Liu
,
Y.
, 2004, “
Finite Difference Time Domain Method for Band-Structure Calculations of Two-Dimensional Phononic Crystals
,”
Solid State Commun.
0038-1098,
132
(
8
), pp.
539
543
.
30.
Chen
,
W.
, and
Fish
,
J.
, 2001, “
A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
153
161
.
31.
Tayler
,
A. B.
, 2001,
Mathematical Models in Applied Mechanics
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.