In this paper, we demonstrate the use of control-based continuation within a physical experiment: a nonlinear energy harvester, which is used to convert vibrational energy into usable electrical energy. By employing the methodology of Sieber et al. (2008, “Experimental Continuation of Periodic Orbits Through a Fold,” Phys. Rev. Lett., 100(24), p. 244101), a branch of periodic orbits is continued through a saddle-node bifurcation and along the associated branch of unstable periodic orbits using a modified time-delay controller. At each step in the continuation, the pseudo-arclength equation is appended to a set of equations that ensure that the controller is noninvasive. The resulting nonlinear system is solved using a quasi-Newton iteration, where each evaluation of the nonlinear system requires changing the excitation parameters of the experiment and measuring the response. We present the continuation results for the energy harvester in a number of different configurations.

1.
Seydel
,
R.
, 1994,
Practical Bifurcation and Stability Analysis
,
Springer
,
New York
.
2.
Doedel
,
E.
,
Keller
,
H.
, and
Kernevez
,
J.
, 1991, “
Numerical Analysis and Control of Bifurcation Problems, Part I
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
1
(
3
), pp.
493
520
.
3.
Doedel
,
E.
,
Keller
,
H.
, and
Kernevez
,
J.
, 1991, “
Numerical Analysis and Control of Bifurcation Problems, Part II
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
1
(
4
), pp.
745
772
.
4.
Kuznetsov
,
Y.
, 1998, “
Elements of Applied Bifurcation Theory
,”
Applied Mathematical Sciences
, Vol.
112
,
2nd ed.
,
Springer
,
New York
.
5.
Barton
,
D.
,
Krauskopf
,
B.
, and
Wilson
,
R.
, 2007, “
Homoclinic Bifurcations in a Neutral Delay Model of a Transmission Line Oscillator
,”
Nonlinearity
0951-7715,
20
(
4
), pp.
809
829
.
6.
De Feo
,
O.
,
Maggio
,
G. M.
, and
Kennedy
,
M. P.
, 2000, “
The Colpitts Oscillator: Families of Periodic Solutions and Their Bifurcations
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
(
5
), pp.
935
958
.
7.
Coombes
,
S.
,
Lord
,
G. J.
, and
Owen
,
M. R.
, 2003, “
Waves and Bumps in Neuronal Networks With Axo-Dendritic Synaptic Interactions
,”
Physica D
0167-2789,
178
(
3–4
), pp.
219
241
.
8.
Luzyanina
,
T.
,
Roose
,
D.
, and
Bocharov
,
G.
, 2005, “
Numerical Bifurcation Analysis of Immunological Models With Time Delays
,”
J. Comput. Appl. Math.
0377-0427,
184
(
1
), pp.
165
176
.
9.
Lloyd
,
D.
, and
Champneys
,
A.
, 2005, “
Efficient Numerical Continuation and Stability Analysis of Spatiotemporal Quadratic Optical Solitons
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
27
(
3
), pp.
759
773
.
10.
Lloyd
,
D.
,
Sandstede
,
B.
,
Avitabile
,
D.
, and
Champneys
,
A.
, 2008, “
Localized Hexagon Patterns of the Planar Swift–Hohenberg Equation
,”
SIAM J. Appl. Dyn. Syst.
1536-0040,
7
(
3
), pp.
1049
1100
.
11.
Doedel
,
E.
,
Champneys
,
A.
,
Fairgrieve
,
T.
,
Kuznetsov
,
Y.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1998, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations.
12.
Dhooge
,
A.
,
Govaerts
,
W.
,
Kuznetsov
,
Y.
,
Mestrom
,
W.
,
Riet
,
A.
, and
Sautois
,
B.
, 2006, MATCONT and CL_MATCONT: Continuation Toolboxes in MATLAB.
13.
Dankowicz
,
H.
, and
Schilder
,
F.
, 2009, “
An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints
,” ASME Paper No. DETC2009/MSNDC-86343.
14.
Engelborghs
,
K.
,
Luzyanina
,
T.
, and
Roose
,
D.
, 2002, “
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL
,”
ACM Trans. Math. Softw.
0098-3500,
28
(
1
), pp.
1
21
.
15.
Barton
,
D.
,
Krauskopf
,
B.
, and
Wilson
,
R.
, 2006, “
Collocation Schemes for Periodic Solutions of Neutral Delay Differential Equations
,”
Journal of Difference Equations and Applications
,
12
(
11
), pp.
1087
1101
.
16.
Szalai
,
R.
, 2005, PDDE-CONT: A Continuation and Bifurcation Software for Delay-Differential Equations.
17.
Heroux
,
M.
,
Bartlett
,
R.
,
Howle
,
V.
,
Hoekstra
,
R.
,
Hu
,
J.
,
Kolda
,
T.
,
Lehoucq
,
R.
,
Long
,
K.
,
Pawlowski
,
R.
,
Phipps
,
E.
,
Salinger
,
A.
,
Thornquist
,
H.
,
Tuminaro
,
R.
,
Willenbring
,
J.
,
Williams
,
A.
, and
Stanley
,
K.
, 2005, “
An Overview of the Trilinos Project
,”
ACM Trans. Math. Softw.
0098-3500,
31
(
3
), pp.
397
423
.
18.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A.
, and
Golinval
,
J. -C.
, 2006, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
3
), pp.
505
592
.
19.
Pyragas
,
K.
, 1992, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
0375-9601,
170
(
6
), pp.
421
428
.
20.
Pyragas
,
K.
, 2001, “
Control of Chaos via an Unstable Delayed Feedback Controller
,”
Phys. Rev. Lett.
0031-9007,
86
(
11
), pp.
2265
2268
.
21.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
(
11
), pp.
1196
1199
.
22.
Sieber
,
J.
, and
Krauskopf
,
B.
, 2008, “
Control Based Bifurcation Analysis for Experiments
,”
Nonlinear Dyn.
0924-090X,
51
(
3
), pp.
365
377
.
23.
Sieber
,
J.
,
Gonzalez-Buelga
,
A.
,
Neild
,
S.
,
Wagg
,
D.
, and
Krauskopf
,
B.
, 2008, “
Experimental Continuation of Periodic Orbits Through a Fold
,”
Phys. Rev. Lett.
0031-9007,
100
(
24
), p.
244101
.
24.
Misra
,
S.
,
Dankowicz
,
H.
, and
Paul
,
M.
, 2008, “
Event-Driven Feedback Tracking and Control of Tapping-Mode Atomic Force Microscopy
,”
Proc. R. Soc. London, Ser. A
0950-1207,
464
(
2096
), pp.
2113
2133
.
25.
Siettos
,
C. I.
,
Kevrekidis
,
I. G.
, and
Maroudas
,
D.
, 2004, “
Coarse Bifurcation Diagrams via Microscopic Simulators: A State-Feedback Control-Based Approach
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
14
(
1
), pp.
207
220
.
26.
Burrow
,
S.
, and
Clare
,
L.
, 2007, “
A Resonant Generator With Non-Linear Compliance for Energy Harvesting in High Vibrational Environments
,”
Proceedings of the Electric Machines and Drives Conference, IEMDC ‘07
, Antalya, Turkey, Vol.
1
, pp.
715
720
.
27.
Burrow
,
S.
,
Clare
,
L.
,
Carrella
,
A.
, and
Barton
,
D.
, 2008, “
Vibration Energy Harvesters With Non-Linear Compliance
,”
Proceedings of the SPIE Smart Structures/NDE Conference
, San Diego, CA, p.
692807
.
28.
Eyert
,
V.
, 1996, “
A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences
,”
J. Comput. Phys.
0021-9991,
124
(
2
), pp.
271
285
.
You do not currently have access to this content.