The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with fractional order temporal operators have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, we consider the following fractional cable equation involving two fractional temporal derivatives: u(x,t)/t=D0t1γ1(κ(2u(x,t)/x2))μ02Dt1γ2u(x,t)+f(x,t), where 0<γ1, γ2<1, κ>0, and μ02 are constants, and D0t1γu(x,t) is the Rieman–Liouville fractional partial derivative of order 1γ. Two new implicit numerical methods with convergence order O(τ+h2) and O(τ2+h2) for the fractional cable equation are proposed, respectively, where τ and h are the time and space step sizes. The stability and convergence of these methods are investigated using the energy method. Finally, numerical results are given to demonstrate the effectiveness of both implicit numerical methods. These techniques can also be applied to solve other types of anomalous subdiffusion problems.

1.
Yuste
,
S. B.
, and
Lindenberg
,
K.
, 2001, “
Subdiffusion-Limited A+A Reactions
,”
Phys. Rev. Lett.
0031-9007,
87
(
11
), p.
118301
.
2.
Barkai
,
E.
,
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
From Continuous Time Random Walks to the Fractional Fokker-Planck Equation
,”
Phys. Rev. E
1063-651X,
61
(
1
), pp.
132
138
.
3.
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
Boundary Value Problems for Fractional Diffusion Equations
,”
Physica A
0378-4371,
278
(
1–2
), pp.
107
125
.
4.
Metzler
,
R.
, and
Klafter
,
J.
, 2000, “
The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
0370-1573,
339
(
1
), pp.
1
77
.
5.
Saichev
,
A. I.
, and
Zaslavsky
,
G. M.
, 1997, “
Fractional Kinetic Equations: Solutions and Applications
,”
Chaos
1054-1500,
7
(
4
), pp.
753
764
.
6.
Zaslavsky
,
G. M.
, 2002, “
Chaos, Fractional Kinetics, and Anomalous Transport
,”
Phys. Rep.
0370-1573,
371
(
6
), pp.
461
580
.
7.
Yuste
,
S. B.
,
Acedo
,
L.
, and
Lindenberg
,
K.
, 2004, “
Reaction Front in an A+B−>C Reaction-Subdiffusion Process
,”
Phys. Rev. E
1063-651X,
69
(
3
), p.
036126
.
8.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
, 2000, “
Application of a Fractional Advection-Dispersion Equation
,”
Water Resour. Res.
0043-1397,
36
(
6
), pp.
1403
1412
.
9.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
, 2000, “
The Fractional-Order Governing Equation of Lévy Motion
,”
Water Resour. Res.
0043-1397,
36
(
6
), pp.
1413
1423
.
10.
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2004, “
Numerical Solution of the Space Fractional Fokker-Planck Equation
,”
J. Comput. Appl. Math.
0377-0427,
166
(
1
), pp.
209
219
.
11.
Liu
,
F.
,
Anh
,
V.
,
Turner
,
I.
, and
Zhuang
,
P.
, 2003, “
Time Fractional Advection-Dispersion Equation
,”
J. Appl. Math. Computing
,
13
(
1–2
), pp.
233
245
.
12.
Henry
,
B. I.
,
Langlands
,
T. A. M.
, and
Wearne
,
S. L.
, 2008, “
Fractional Cable Models for Spiny Neuronal Dendrites
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
128103
.
13.
Magin
,
R.
,
Feng
,
X.
, and
Baleanu
,
D.
, 2009, “
Solving the Fractional Order Bloch Equation
,”
Concepts in Magnetic Resonance Part A
,
34A
(
1
), pp.
16
23
.
14.
Gorenflo
,
R.
,
Mainardi
,
F.
,
Scalas
,
E.
, and
Raberto
,
M.
, 2001, “
Fractional Calculus and Continuous-Time Finance. III. The Diffusion Limit
,”
Mathematical Finance
,
Birkhäuser-Verlag
,
Basel
, pp.
171
180
.
15.
Raberto
,
M.
,
Scalas
,
E.
, and
Mainardi
,
F.
, 2002, “
Waiting-Times and Returns in High-Frequency Financial Data: An Empirical Study
,”
Physica A
0378-4371,
314
(
1–4
), pp.
749
755
.
16.
Scalas
,
E.
,
Gorenflo
,
R.
, and
Mainardi
,
F.
, 2000, “
Fractional Calculus and Continuous-Time Finance
,”
Physica A
0378-4371,
284
(
1–4
), pp.
376
384
.
17.
Wyss
,
W.
, 2000, “
The Fractional Black-Scholes Equation
,”
Fractional Calculus Appl. Anal.
1311-0454,
3
, pp.
51
61
.
18.
Qian
,
N.
, and
Sejnowski
,
T.
, 1989, “
An Electro-Diffusion Model for Computing Membrane Potentials and Ionic Concentrations in Branching Dendrites, Spines and Axons
,”
Biol. Cybern.
0340-1200,
62
, pp.
1
15
.
19.
Saxton
,
M.
, 2001, “
Anomalous Subdiffusion in Fluorescence Photobleaching Recovery: A Monte Carlo Study
,”
Biophys. J.
0006-3495,
81
, pp.
2226
2240
.
20.
Langlands
,
T. A. M.
,
Henry
,
B.
, and
Wearne
,
S.
, 2005, “
Solution of a Fractional Cable Equation: Finite Case
,” http://www.maths.unsw.edu.au/applied/files/2005/amr05-33.pdfhttp://www.maths.unsw.edu.au/applied/files/2005/amr05-33.pdf
21.
Langlands
,
T. A. M.
,
Henry
,
B.
, and
Wearne
,
S.
, 2005, “
Solution of a Fractional Cable Equation: Infinite Case
,” http://www.maths.unsw.edu.au/applied/files/2005/amr05-34.pdfhttp://www.maths.unsw.edu.au/applied/files/2005/amr05-34.pdf
22.
Santamaria
,
F.
,
Wils
,
S.
,
De Schutter
,
E.
, and
Augustine
,
G. J.
, 2006, “
Anomalous Diffusion in Purkinje Cell Dendrites Caused by Spines
,”
Neuron
0896-6273,
52
, pp.
635
648
.
23.
Meerschaert
,
M.
, and
Tadjeran
,
C.
, 2004, “
Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations
,”
J. Comput. Appl. Math.
0377-0427,
172
, pp.
65
77
.
24.
Roop
,
J. P.
, 2006, “
Computational Aspects of FEM Approximation of Fractional Advection Dispersion Equation on Bounded Domains in R2
,”
J. Comput. Appl. Math.
0377-0427,
193
, pp.
243
268
.
25.
Lin
,
R.
, and
Liu
,
F.
, 2007, “
Fractional High Order Methods for the Nonlinear Fractional Ordinary Differential Equation
,”
Nonlinear Anal.
,
66
(
4
), pp.
856
869
.
26.
Liu
,
Q.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
, 2007, “
Approximation of the Levy-Feller Advection-Dispersion Process by Random Walk and Finite Difference Method
,”
J. Phys.: Condens. Matter
0953-8984,
222
, pp.
57
70
.
27.
Zhuang
,
P.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2009, “
Numerical Methods for the Variable-Order Fractional Advection-Diffusiion Equation With a Nonlinear Source Term
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
47
(
3
), pp.
1760
1761
.
28.
Lin
,
R.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2009, “
Stability and Convergence of a New Explicit Finite-Difference Approximation for the Variable-Order Nonlinear Fractional Diffusion Equation
,”
Applied and Computational Mathematics
,
212
(
2
), pp.
435
445
.
29.
Yu
,
Q.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2008, “
Solving Linear and Nonlinear Space-Time Fractional Reaction-Diffusion Equations by Adomian Decomposition Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
, pp.
138
158
.
30.
Yuste
,
S. B.
, and
Acedo
,
L.
, 2005, “
An Explicit Finite Difference Method and a New Von Neumann-Type Stability Analysis for Fractional Diffusion Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
42
(
5
), pp.
1862
1874
.
31.
Yuste
,
S. B.
, 2006, “
Weighted Average Finite Difference Methods for Fractional Diffusion Equations
,”
J. Comput. Phys.
0021-9991,
216
(
1
), pp.
264
274
.
32.
Langlands
,
T. A. M.
, and
Henry
,
B. I.
, 2005, “
The Accuracy and Stability of an Implicit Solution Method for the Fractional Diffusion Equation
,”
J. Comput. Phys.
0021-9991,
205
, pp.
719
736
.
33.
Chen
,
C.
,
Liu
,
F.
,
Turner
,
I.
, and
Anh
,
V.
, 2007, “
Fourier Method for the Fractional Diffusion Equation Describing Sub-Diffusion
,”
J. Comput. Phys.
0021-9991,
227
, pp.
886
897
.
34.
Chen
,
C.
,
Liu
,
F.
, and
Anh
,
V.
, 2009, “
A Fourier Method and an Extrapolation Technique for Stokes’ First Problem for a Heated Generalized Second Grade Fluid With Fractional Derivative
,”
J. Comput. Appl. Math.
0377-0427,
223
, pp.
777
789
.
35.
Zhuang
,
P.
,
Liu
,
F.
,
Anh
,
V.
, and
Turner
,
I.
, 2008, “
New Solution and Analytical Techniques of the Implicit Numerical Methods for the Anomalous Sub-Diffusion Equation
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
46
(
2
), pp.
1079
1095
.
36.
Liu
,
F.
,
Yang
,
C.
, and
Burrage
,
K.
, 2009, “
Numerical Method and Analytical Technique of the Modified Anomalous Subdiffusion Equation With a Nonlinear Source Term
,”
J. Comput. Appl. Math.
0377-0427,
231
(
1
), pp.
160
176
.
37.
Oldham
,
K. B.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
38.
Jacobs
,
B.
,
Driscoll
,
L.
, and
Schall
,
M.
, 1997, “
Life-Span Dendritic and Spine Changes in Areas 10 And 18 of Human Cortex: A Quantitative Golgi Study
,”
J. Comp. Neurol.
0021-9967,
386
, pp.
661
680
.
39.
Duan
,
H.
,
Wearne
,
S. L.
,
Rocher
,
A. B.
,
Macedo
,
A.
,
Morrison
,
J. H.
, and
Hof
,
P. R.
, 2003, “
Age-Related Dendritic and Spine Changes in Corticocortically Projecting Neurons in Macaque Monkeys
,”
Cereb. Cortex
1047-3211,
13
(
9
), pp.
950
961
.
40.
Nimchinsky
,
E. A.
,
Sabatini
,
B. L.
, and
Svoboda
,
K.
, 2002, “
Structure and Function of Dendritic Spines
,”
Annu. Rev. Physiol.
0066-4278,
64
, pp.
313
353
.
You do not currently have access to this content.