Deoxyribonucleic acid (DNA) is an essential molecule that enables the storage and retrieval of genetic information. In its role during cellular processes, this long flexible molecule is significantly bent and twisted. Previously, we developed an elastodynamic rod approximation to study DNA deformed into a loop by a gene regulatory protein (lac repressor) and predicted the energetics and topology of the loops. Although adequate for DNA looping, our model neglected electrostatic interactions, which are essential when considering processes that result in highly supercoiled DNA including plectonemes. Herein, we extend the rod approximation to account for electrostatic interactions and present strategies that improve computational efficiency. Our calculations for the stability for a circularly bent rod and for an initially straight rod compare favorably to existing equilibrium models. With this new capability, we are now well-positioned to study the dynamics of transcription and other dynamic processes that result in DNA supercoiling.

1.
Watson
,
J. D.
, and
Crick
,
F. H. C.
, 1953, “
Molecular Structure of Nucleic Acids—A Structure for Deoxyribose Nucleic Acid
,”
Nature (London)
0028-0836,
171
(
4356
), pp.
737
738
.
2.
Franklin
,
R. E.
, and
Gosling
,
R. G.
, 1953, “
Molecular Configuration in Sodium Thymonucleate
,”
Nature (London)
0028-0836,
171
(
4356
), pp.
740
741
.
3.
Calladine
,
C. R.
,
Drew
,
H. R.
,
Luisi
,
B. F.
, and
Travers
,
A. A.
, 2004.
Understanding DNA: The Molecule and How It Works
, 3rd ed.,
Elsevier Academic Press
,
San Diego, CA
.
4.
Fuller
,
F. B.
, 1971, “
The Writhing Number of a Space Curve
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
68
(
4
), pp.
815
819
.
5.
Lankaš
,
F.
,
Lavery
,
R.
, and
Maddocks
,
J. H.
, 2006, “
Kinking Occurs During Molecular Dynamics Simulations of Small DNA Minicircles
,”
Structure (London)
0969-2126,
14
(
10
), pp.
1527
1534
.
6.
Beveridge
,
D. L.
,
Barreiro
,
G.
,
Byun
,
K. S.
,
Case
,
D. A.
,
Cheatham
,
T. E.
,
Dixit
,
S. B.
,
Giudice
,
E.
,
Lankas
,
F.
,
Lavery
,
R.
,
Maddocks
,
J. H.
,
Osman
,
R.
,
Seibert
,
E.
,
Sklenar
,
H.
,
Stoll
,
G.
,
Thayer
,
K. M.
,
Varnai
,
P.
, and
Young
,
M. A.
, 2004, “
Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(C(p)G) Steps
,”
Biophys. J.
0006-3495,
87
(
6
), pp.
3799
3813
.
7.
Dans
,
P. D.
,
Zeida
,
A.
,
Machado
,
M. R.
, and
Pantano
,
S.
, 2010, “
A Coarse Grained Model for Atomic-Detailed DNA Simulations With Explicit Electrostatics
,”
J. Chem. Theory Comput.
1549-9618,
6
(
5
), pp.
1711
1725
.
8.
Morriss-Andrews
,
A.
,
Rottler
,
J.
, and
Plotkin
,
S. S.
, 2010, “
A Systematically Coarse-Grained Model for DNA and Its Predictions for Persistence Length, Stacking, Twist, and Chirality
,”
J. Chem. Phys.
0021-9606,
132
(
3
), p.
035105
.
9.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2005, “
Nonlinear Dynamics and Loop Formation in Kirchhoff Rods With Implications to the Mechanics of DNA and Cables
,”
J. Comput. Phys.
0021-9991,
209
(
1
), pp.
371
389
.
10.
Goyal
,
S.
,
Lillian
,
T.
,
Blumberg
,
S.
,
Meiners
,
J. -C.
,
Meyhöfer
,
E.
, and
Perkins
,
N. C.
, 2007, “
Intrinsic Curvature of DNA Influences LacR-Mediated Looping
,”
Biophys. J.
0006-3495,
93
(
12
), pp.
4342
4359
.
11.
Lillian
,
T. D.
,
Goyal
,
S.
,
Kahn
,
J. D.
,
Meyhöfer
,
E.
, and
Perkins
,
N. C.
, 2008, “
Computational Analysis of Looping of a Large Family of Highly Bent DNA by LacI
,”
Biophys. J.
0006-3495,
95
(
12
), pp.
5832
5842
.
12.
Lillian
,
T. D.
,
Perkins
,
N. C.
, and
Goyal
,
S.
, 2008, “
Computational Elastic Rod Model Applied to DNA Looping
,”
Proceedings of ASME IDETC/CIE 2007
, Las Vegas, NV, Sep. 4–7, Vol.
5
, pp.
1449
1456
.
13.
Goyal
,
S.
, 2006, “
A Dynamic Rod Model to Simulate Mechanics of Cables and DNA
,” Ph.D. thesis, University of Michigan.
14.
Strick
,
T.
,
Allemand
,
J. F.
,
Croquette
,
V.
, and
Bensimon
,
D.
, 2000, “
Twisting and Stretching Single DNA Molecules
,”
Prog. Biophys. Mol. Biol.
0079-6107,
74
(
1–2
), pp.
115
140
.
15.
Bustamante
,
C.
,
Marko
,
J. F.
,
Siggia
,
E. D.
, and
Smith
,
S.
, 1994, “
Entropic Elasticity of Lambda-Phage DNA
,”
Science
0036-8075,
265
(
5178
), pp.
1599
1600
.
16.
Bryant
,
Z.
,
Stone
,
M. D.
,
Gore
,
J.
,
Smith
,
S. B.
,
Cozzarelli
,
N. R.
, and
Bustamante
,
C.
, 2003, “
Structural Transitions and Elasticity From Torque Measurements on DNA
,”
Nature (London)
0028-0836,
424
(
6946
), pp.
338
341
.
17.
Bustamante
,
C.
,
Bryant
,
Z.
, and
Smith
,
S. B.
, 2003, “
Ten Years of Tension: Single-Molecule DNA Mechanics
,”
Nature (London)
0028-0836,
421
(
6921
), pp.
423
427
.
18.
Manning
,
R. S.
,
Maddocks
,
J. H.
, and
Kahn
,
J. D.
, 1996, “
A Continuum Rod Model of Sequence-Dependent DNA Structure
,”
J. Chem. Phys.
0021-9606,
105
(
13
), pp.
5626
5646
.
19.
Swigon
,
D.
,
Coleman
,
B. D.
, and
Olson
,
W. K.
, 2006, “
Modeling the Lac Repressor-Operator Assembly: The Influence of DNA Looping on Lac Repressor conformation
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
(
26
), pp.
9879
9884
.
20.
Munteanu
,
M. G.
,
Vlahovicek
,
K.
,
Parthasarathy
,
S.
,
Simon
,
I.
, and
Pongor
,
S.
, 1998, “
Rod Models of DNA: Sequence-Dependent Anisotropic Elastic Modelling of Local Bending Phenomena
,”
Trends Biochem. Sci.
0167-7640,
23
(
9
), pp.
341
347
.
21.
Schlick
,
T.
, 1995, “
Modeling Superhelical DNA: Recent Analytical and Dynamic Approaches
,”
Curr. Opin. Struct. Biol.
0959-440X,
5
(
2
), pp.
245
262
.
22.
Balaeff
,
A.
,
Mahadevan
,
L.
, and
Schulten
,
K.
, 2006, “
Modeling DNA Loops Using the Theory of Elasticity
,”
Phys. Rev. E
1063-651X,
73
(
3
), p.
031919
.
23.
Baumann
,
C. G.
,
Smith
,
S. B.
,
Bloomfield
,
V. A.
, and
Bustamante
,
C.
, 1997, “
Ionic Effects on the Elasticity of Single DNA Molecules
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
94
(
12
), pp.
6185
6190
.
24.
Strick
,
T. R.
,
Allemand
,
J. F.
,
Bensimon
,
D.
,
Bensimon
,
A.
, and
Croquette
,
V.
, 1996, “
The Elasticity of a Single Supercoiled DNA Molecule
,”
Science
0036-8075,
271
(
5257
), pp.
1835
1837
.
25.
Hagerman
,
P. J.
, 1988, “
Flexibility of DNA
,”
Annu. Rev. Biophys. Biophys. Chem.
0883-9182,
17
, pp.
265
286
.
26.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-Alpha Method
,”
ASME J. Appl. Mech.
0021-8936,
60
(
2
), pp.
371
375
.
27.
Vologodskii
,
A.
, and
Cozzarelli
,
N.
, 1995, “
Modeling of Long-Range Electrostatic Interactions in DNA
,”
Biopolymers
0006-3525,
35
(
3
), pp.
289
296
.
28.
Klapper
,
I.
, 1996, “
Biological Applications of the Dynamics of Twisted Elastic Rods
,”
J. Comput. Phys.
0021-9991,
125
(
2
), pp.
325
337
.
29.
Goyal
,
S.
,
Perkins
,
N. C.
, and
Lee
,
C. L.
, 2008, “
Non-Linear Dynamic Intertwining of Rods With Self-Contact
,”
Int. J. Non-Linear Mech.
0020-7462,
43
(
1
), pp.
65
73
.
30.
Delrow
,
J. J.
,
Gebe
,
J. A.
, and
Schurr
,
J. M.
, 1997, “
Comparison of Hard-Cylinder and Screened Coulomb Interactions in the Modeling of Supercoiled DNAs
,”
Biopolymers
0006-3525,
42
(
4
), pp.
455
470
.
31.
Coleman
,
B. D.
,
Swigon
,
D.
, and
Tobias
,
I.
, 2000, “
Elastic Stability of DNA Configurations. II. Supercoiled Plasmids With Self-Contact
,”
Phys. Rev. E
1063-651X,
61
(
1
), pp.
759
770
.
32.
van der Heijden
,
G. H. M.
,
Neukirch
,
S.
,
Goss
,
V. G. A.
, and
Thompson
,
J. M. T.
, 2003, “
Instability and Self-Contact Phenomena in the Writhing of Clamped Rods
,”
Int. J. Mech. Sci.
0020-7403,
45
(
1
), pp.
161
196
.
You do not currently have access to this content.