In this paper, an extended model of the Fermi-acceleration oscillator is presented to describe impacting chatters, grazing, and sticking between the particle (or bouncing ball) and piston. The sticking phenomenon in such a system is investigated for the first time. Even in the traditional Fermi-oscillator, such a sticking phenomenon still exists but one often ignored it. In this paper, the analytical conditions for the grazing and sticking phenomena between the particle and piston in the Fermi-acceleration oscillator are developed from the theory of discontinuous dynamical systems. Compared with existing studies, the four exact mappings are used to analyze the motion behaviors of the Fermi-oscillator instead of one or two mappings. Mapping structures formed by generic mappings are adopted for the analytical predictions of periodic motions in the Fermi-acceleration oscillator. Periodic and chaotic motions in such an oscillator are illustrated to show motion complexity and grazing and sticking mechanism. Once the masses of the ball and primary mass are in the same quantity level, the model presented in this paper will be very useful and significant. This idea can apply to a system possessing two independent oscillators with impact, such as gear transmission systems, bearing systems, and time-varying billiard systems.

1.
Zaslavskii
,
G. M.
, and
Chirikov
,
B. V.
, 1964, “
Fermi Acceleration Mechanism in the One-Dimensional Case
,”
Dokl. Akad. Nauk SSSR
0002-3264,
159
, pp.
306
309
.
2.
Luna-Acosta
,
G. A.
, 1990, “
Regular and Chaotic Dynamics of the Damped Fermi Accelerator
,”
Phys. Rev. A
1050-2947,
42
, pp.
7155
7162
.
3.
Saif
,
F.
,
Bialynicki-Birula
,
I.
,
Fortunato
,
M.
, and
Schleich
,
W. P.
, 1998, “
Fermi Accelerator in Atom Optics
,”
Phys. Rev. A
1050-2947,
58
, pp.
4779
4783
.
4.
Lopac
,
V.
, and
Dananic
,
V.
, 1998, “
Energy Conservation and Chaos in the Gravitationally Driven Fermi Oscillator
,”
American Journal of Physics
,
66
, pp.
892
902
.
5.
Bouchet
,
F.
, 2004, “
Minimal Stochastic Model for Fermi’s Acceleration
,”
Phys. Rev. Lett.
0031-9007,
92
(
4
), p.
040601
.
6.
Leonel
,
E. D.
, and
de Carvalho
,
R. E.
, 2007, “
A Family of Crisis in a Dissipative Fermi Accelerator Model
,”
Phys. Lett. A
0375-9601,
364
, pp.
475
479
.
7.
Bapat
,
C. N.
, and
Popplewell
,
N.
, 1983, “
Stable Periodic Motions of an Impact-Pair
,”
J. Sound Vib.
0022-460X,
87
, pp.
19
40
.
8.
Shaw
,
S. W.
, and
Holmes
,
P. J.
, 1983, “
A Periodically Forced Piecewise Linear Oscillator
,”
J. Sound Vib.
0022-460X,
90
, pp.
129
155
.
9.
Bapat
,
C. N.
, 1988, “
Impact-Pair Under Periodic Excitation
,”
J. Sound Vib.
0022-460X,
120
, pp.
53
61
.
10.
Bapat
,
C. N.
, 1995, “
The General Motion of an Inclined Impact Damper With Friction
,”
J. Sound Vib.
0022-460X,
184
, pp.
417
427
.
11.
Han
,
R. P. S.
,
Luo
,
A. C. J.
, and
Deng
,
W.
, 1995, “
Chaotic Motion of a Horizontal Impact Pair
,”
J. Sound Vib.
0022-460X,
181
, pp.
231
250
.
12.
Luo
,
A. C. J.
, 2002, “
An Unsymmetrical Motion in a Horizontal Impact Oscillator
,”
ASME J. Vib. Acoust.
,
124
, pp.
420
426
.
13.
Holmes
,
P. J.
, 1982, “
The Dynamics of Repeated Impacts With a Sinusoidally Vibrating Table
,”
J. Sound Vib.
0022-460X,
84
, pp.
173
189
.
14.
Luo
,
A. C. J.
, and
Han
,
R. P. S.
, 1996, “
The Dynamics of a Bouncing Ball With a Sinusoidally Vibrating Table Revisited
,”
Nonlinear Dyn.
0924-090X,
10
, pp.
1
18
.
15.
Giusepponi
,
S.
,
Marchesoni
,
F.
, and
Borromeo
,
M.
, 2004, “
Randomness in the Bouncing Ball Dynamics
,”
Physica A
0378-4371,
351
, pp.
143
158
.
16.
Nordmark
,
A. B.
, 1991, “
Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator
,”
J. Sound Vib.
0022-460X,
145
, pp.
279
297
.
17.
Budd
,
C. D.
, and
Dux
,
F.
, 1994, “
Chattering and Related Behavior in Impact Oscillators
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
347
, pp.
365
389
.
18.
Budd
,
C. D.
, and
Dux
,
F.
, 1996, “
Double Impact Orbits of Periodically Forced Impact Oscillator
,”
Proc. R. Soc. London, Ser. A
0950-1207,
452
, pp.
2719
2750
.
19.
Luo
,
A. C. J.
, 2005, “
The Mapping Dynamics of Periodic Motions for a Three-Piecewise Linear System Under a Periodic Excitation
,”
J. Sound Vib.
0022-460X,
283
, pp.
723
748
.
20.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamic Systems on the Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
21.
Luo
,
A. C. J.
, and
Chen
,
L.
, 2005, “
Grazing Bifurcation and Periodic Motion Switching in a Piecewise Linear, Impacting Oscillator Under a Periodical Excitation
,”
ASME 2005 International Mechanical Engineering Congress and Exposition (IMECE2005) Design Engineering, Parts A and B
, pp.
913
924
.
22.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2006, “
Stick and Non-Stick Periodic Motions in Periodically Forced Oscillators With Dry Friction
,”
J. Sound Vib.
0022-460X,
291
, pp.
132
168
.
23.
Luo
,
A. C. J.
, and
O’Connor
,
D.
, 2007, “
Nonlinear Dynamics of a Gear Transmission System Part I: Mechanism of Impacting Chatter With Stick
,”
ASME
Paper No. DETC2007-34881.
24.
Luo
,
A. C. J.
, and
O’Connor
,
D.
, 2007, “
Nonlinear Dynamics of a Gear Transmission System Part II: Periodic Impacting Chatter and Stick
,”
ASME
Paper No. DETC2007-43192.
25.
Luo
,
A. C. J.
, 2006,
Singularity and Dynamics on Discontinuous Vector Fields
,
Elsevier
,
Amsterdam
.
26.
Luo
,
A. C. J.
, 2008,
Global Transversality, Resonance and Chaotic Dynamics
,
World Scientific
,
Singapore
.
27.
Filippov
,
A. F.
, 1988,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer Academic
,
Dordrecht
.
You do not currently have access to this content.