Implicit integration, unencumbered by numerical stability constraints, is attractive in molecular dynamics (MD) simulation due to its presumed ability to advance the simulation at large step sizes. It is not clear what step size values can be expected and if the larger step sizes will compensate for the computational overhead associated with an implicit integration method. The goal of this paper is to answer these questions and thereby assess quantitatively the potential of implicit integration in MD. Two implicit methods (midpoint and Hilber–Hughes–Taylor) are compared with the current standard for MD time integration (explicit velocity Verlet). The implicit algorithms were implemented in a research grade MD code, which used a first-principles interaction potential for biological molecules. The nonlinear systems of equations arising from the use of implicit methods were solved in a quasi-Newton framework. Aspects related to a Newton–Krylov type method are also briefly discussed. Although the energy conservation provided by the implicit methods was good, the integration step size lengths were limited by loss of convergence in the Newton iteration. Moreover, a spectral analysis of the dynamic response indicated that high frequencies present in the velocity and acceleration signals prevent a substantial increase in integration step size lengths. The overhead associated with implicit integration prevents this class of methods from having a decisive impact in MD simulation, a conclusion supported by a series of quantitative analyses summarized in the paper.

1.
Allen
,
M.
, and
Tildesley
,
D.
, 1990,
Computer Simulation of Liquids
,
Oxford University Press
,
Oxford, UK
.
2.
Haile
,
J.
, 1992,
Molecular Dynamics Simulation: Elementary Methods
,
Wiley
,
New York, NY
.
3.
Leach
,
A.
, 2001,
Molecular Modelling: Principles and Applications
,
Addison-Wesley
,
Essex, UK
.
4.
Car
,
R.
, and
Parrinello
,
M.
, 1985, “
Unified Approach for Molecular Dynamics and Density-Functional Theory
,”
Phys. Rev. Lett.
0031-9007,
55
, pp.
2471
2474
.
5.
Payne
,
M.
,
Teter
,
M.
,
Allan
,
D.
,
Arias
,
T.
, and
Joannopoulos
,
J.
, 1992, “
Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients
,”
Rev. Mod. Phys.
0034-6861,
64
, pp.
1045
1097
.
6.
Kresse
,
G.
, and
Hafner
,
J.
, 1993, “
Ab Initio Molecular Dynamics for Liquid Metals
,”
Phys. Rev. B
0163-1829,
47
, pp.
558
561
.
7.
Kresse
,
G.
, and
Hafner
,
J.
, 1994, “
Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium
,”
Phys. Rev. B
0163-1829,
49
(
20
), pp.
14251
14269
.
8.
Brooks
,
B.
,
Bruccoleri
,
R.
,
Olafson
,
B.
,
States
,
D.
,
Swaminathan
,
S.
, and
Karplus
,
M.
, 1983, “
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations Supported in Part by Grants From the National Science Foundation and the National Institutes of Health
,”
J. Comput. Chem.
0192-8651,
4
(
2
), pp.
187
217
.
9.
Pearlman
,
D. A.
,
Case
,
D. A.
,
Caldwell
,
J. W.
,
Ross
,
W. S.
,
Cheatham
,
T. E.
,
DeBolt
,
S.
,
Ferguson
,
D.
,
Seibel
,
G.
, and
Kollman
,
P.
, 1995, “
Amber, A Package of Computer Programs for Applying Molecular Mechanics, Normal Mode Analysis, Molecular Dynamics and Free Energy Calculations to Simulate The Structural and Energetic Properties of Molecules
,”
Comput. Phys. Commun.
0010-4655,
91
(
1–3
), pp.
1
41
.
10.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. R.
,
Merz
,
K. M.
, Jr.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
, 1995, “
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
,”
J. Am. Chem. Soc.
0002-7863,
117
, pp.
5179
5197
.
11.
Schuler
,
L.
,
Daura
,
X.
, and
Van Gunsteren
,
W.
, 2001, “
An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase
,”
J. Comput. Chem.
0192-8651,
22
(
11
), pp.
1205
1218
.
12.
van Meel
,
J.
,
Arnold
,
A.
,
Frenkel
,
D.
,
Zwart
,
S.
, and
Belleman
,
R.
, 2008, “
Harvesting Graphics Power for MD Simulations
,”
Mol. Simul.
0892-7022,
34
(
3
), pp.
259
266
.
13.
Dynerman
,
D.
,
Butzlaff
,
E.
, and
Mitchell
,
J.
, 2009, “
CUSA and CUDE: GPU-Accelerated Methods for Estimating Solvent Accessible Surface Area and Desolvation
,”
J. Comput. Biol.
1066-5277,
16
(
4
), pp.
523
537
.
14.
Board
,
J.
,
Causey
,
J.
,
Leathrum
,
F.
,
Windemuth
,
A.
, and
Schulten
,
K.
, 1992, “
Accelerated Molecular Dynamics Simulation With the Parallel Fast Multipole Algorithm
,”
Chem. Phys. Lett.
0009-2614,
198
(
1–2
), pp.
89
94
.
15.
Rudd
,
R.
, and
Broughton
,
J.
, 1998, “
Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements
,”
Phys. Rev. B
0163-1829,
58
(
10
), pp.
R5893
R5896
.
16.
Mukherjee
,
R.
, and
Anderson
,
K.
, 2007, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
1384-5640,
18
(
2
), pp.
145
168
.
17.
Mukherjee
,
R.
,
Crozier
,
P.
,
Plimpton
,
S.
, and
Anderson
,
K.
, 2008, “
Substructured Molecular Dynamics Using Multibody Dynamics Algorithms
,”
Int. J. Non-Linear Mech.
0020-7462,
43
(
10
), pp.
1040
1055
.
18.
Roux
,
B.
, 1999, “
Implicit Solvent Models
,”
Computational Biochemistry and Biophysics
,
Marcel Dekker, Inc.
,
New York, Basel
.
19.
Ferrara
,
P.
,
Apostolakis
,
J.
, and
Caflisch
,
A.
, 2002, “
Evaluation of a Fast Implicit Solvent Model for Molecular Dynamics Simulations
,”
Proteins
0887-3585,
46
(
1
), pp.
24
33
.
20.
Gallicchio
,
E.
, and
Levy
,
R.
, 2004, “
AGBNP: An Analytic Implicit Solvent Model Suitable for Molecular Dynamics Simulations and High-Resolution Modeling
,”
J. Comput. Chem.
0192-8651,
25
(
4
), pp.
479
499
.
21.
Mongan
,
J.
,
Case
,
D.
, and
McCammon
,
J.
, 2004, “
Constant pH Molecular Dynamics in Generalized Born Implicit Solvent
,”
J. Comput. Chem.
0192-8651,
25
(
16
), pp.
2038
2048
.
22.
Sanz-Serna
,
J.
,
Calvo
,
M.
, and
Skeel
,
R.
, 1994,
Numerical Hamiltonian Problems
,
Chapman and Hall
,
London
.
23.
Hairer
,
E.
, and
Wanner
,
G.
, 1996, “
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Volume 14 of Springer Series in Computational Mathematics
,”
Springer-Verlag
,
Berlin, Heidelberg, New York
, Vol.
2
, pp.
3
540
.
24.
Schlick
,
T.
, 2002,
Molecular Modeling and Simulation: An Interdisciplinary Guide
,
Springer-Verlag
,
Secaucus, NJ
.
25.
Tuckerman
,
M.
,
Berne
,
B.
, and
Martyna
,
G.
, 1992, “
Reversible Multiple Time Scale Molecular Dynamics
,”
J. Chem. Phys.
0021-9606,
97
(
3
), pp.
1990
2001
.
26.
Humphreys
,
D.
,
Friesner
,
R.
, and
Berne
,
B.
, 1994, “
A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules
,”
J. Phys. Chem.
0022-3654,
98
(
27
), pp.
6885
6892
.
27.
Barth
,
E.
, and
Schlick
,
T.
, 1998, “
Overcoming Stability Limitations in Biomolecular Dynamics. I. Combining Force Splitting via Extrapolation With Langevin Dynamics in LN
,”
J. Chem. Phys.
0021-9606,
109
, pp.
1617
1632
.
28.
Tuckerman
,
M.
,
Yarne
,
D.
,
Samuelson
,
S.
,
Hughes
,
A.
, and
Martyna
,
G.
, 2000, “
Exploiting Multiple Levels of Parallelism in Molecular Dynamics Based Calculations via Modern Techniques and Software Paradigms on Distributed Memory Computers
,”
Comput. Phys. Commun.
0010-4655,
128
(
1–2
), pp.
333
376
.
29.
Minary
,
P.
,
Tuckerman
,
M.
, and
Martyna
,
G.
, 2004, “
Long Time Molecular Dynamics for Enhanced Conformational Sampling in Biomolecular Systems
,”
Phys. Rev. Lett.
0031-9007,
93
(
15
), p.
150201
.
30.
Garcia-Archilla
,
B.
,
Sanz-Serna
,
J.
, and
Skeel
,
R.
, 1998, “
Long-Time-Step Methods for Oscillatory Differential Equations
,”
Numerical analysis 1997: Proceedings of the 17th Dundee Biennial Conference, June 24–27, 1997
,
Addison Wesley Longman Inc.
,
Essex, England
, p.
111
.
31.
Izaguirre
,
J.
,
Reich
,
S.
, and
Skeel
,
R.
, 1999, “
Longer Time Steps for Molecular Dynamics
,”
J. Chem. Phys.
0021-9606,
110
, pp.
9853
9863
.
32.
Leimkuhler
,
B.
, and
Reich
,
S.
, 2001, “
A Reversible Averaging Integrator for Multiple Time-Scale Dynamics
,”
J. Comput. Phys.
0021-9991,
171
(
1
), pp.
95
114
.
33.
Leimkuhler
,
B.
, 2002, “
An Efficient Multiple Time-Scale Reversible Integrator for the Gravitational N-Body Problem
,”
Appl. Numer. Math.
0168-9274,
43
(
1–2
), pp.
175
190
.
34.
Ryckaert
,
J.
,
Ciccotti
,
G.
, and
Berendsen
,
H.
, 1977, “
Numerical Integration of the Cartesian Equations of Motion of a System With Constraints: Molecular Dynamics of N-Alkanes
,”
J. Comput. Phys.
0021-9991,
23
(
3
), pp.
327
341
.
35.
van Gunsteren
,
W.
, and
Berendsen
,
H.
, 1977, “
Algorithms for Macromolecular Dynamics and Constraint Dynamics
,”
Mol. Phys.
0026-8976,
34
(
5
), pp.
1311
1327
.
36.
van Gunsteren
,
W.
, 1980, “
Constrained Dynamics of Flexible Molecules
,”
Mol. Phys.
0026-8976,
40
(
4
), pp.
1015
1019
.
37.
Biesiadecki
,
J.
, and
Skeel
,
R.
, 1993, “
Dangers of Multiple Time Step Methods
,”
J. Comput. Phys.
0021-9991,
109
, pp.
318
328
.
38.
Izaguirre
,
J.
,
Ma
,
Q.
,
Matthey
,
T.
,
Willcock
,
J.
,
Slabach
,
T.
,
Moore
,
B.
, and
Viamontes
,
G.
, 2002, “
Overcoming Instabilities in Verlet-I/r-RESPA With the Mollified Impulse Method
,”
Lecture Notes in Computational Science and Engineering
1439-7358,
26
, pp.
146
176
.
39.
Chin
,
S.
, 2004, “
Dynamical Multiple-Time Stepping Methods for Overcoming Resonance Instabilities
,”
J. Chem. Phys.
0021-9606,
120
, pp.
8
13
.
40.
Ma
,
Q.
,
Izaguirre
,
J.
, and
Skeel
,
R.
, 2003, “
Verlet-I/r-RESPA/Impulse Is Limited by Nonlinear Instability
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
24
(
6
), pp.
1951
1973
.
41.
Van Gunsteren
,
W.
, and
Karplus
,
M.
, 1982, “
Effect of Constraints on the Dynamics of Macromolecules
,”
Macromolecules
0024-9297,
15
(
6
), pp.
1528
1544
.
42.
Zhang
,
G.
, and
Schlick
,
T.
, 1994, “
The Langevin/Implicit-Euler/Normal-Mode Scheme for Molecular Dynamics at Large Time Steps
,”
J. Chem. Phys.
0021-9606,
101
, pp.
4995
5012
.
43.
Stern
,
A.
, and
Grinspun
,
E.
, 2009, “
Implicit-Explicit Variational Integration of Highly Oscillatory Problems
,”
Multiscale Model. Simul.
1540-3459,
7
(
4
), pp.
1779
1794
(2009).
44.
Leimkuhler
,
B.
, and
Skeel
,
R.
, 1994, “
Symplectic Numerical Integrators in Constrained Hamiltonian Systems
,”
J. Comput. Phys.
0021-9991,
112
(
1
), pp.
117
125
.
45.
Janezic
,
D.
, and
Orel
,
B.
, 1993, “
Implicit Runge-Kutta Method for Molecular Dynamics Integration
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
33
(
2
), pp.
252
257
.
46.
Janezic
,
D.
, and
Trobec
,
R.
, 1994, “
Parallelization of an Implicit Runge-Kutta Method for Molecular Dynamics Integration
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
34
(
3
), pp.
641
646
.
47.
Mandziuk
,
M.
, and
Schlick
,
T.
, 1995, “
Resonance in the Dynamics of Chemical Systems Simulated by the Implicit Midpoint Scheme
,”
Chem. Phys. Lett.
0009-2614,
237
(
5–6
), pp.
525
535
.
48.
Ascher
,
U.
, and
Reich
,
S.
, 1999, “
The Midpoint Scheme and Variants for Hamiltonian Systems: Advantages and Pitfalls
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
3
), pp.
1045
1065
.
49.
Sandu
,
A.
, and
Schlick
,
T.
, 1999, “
Masking Resonance Artifacts in Force-Splitting Methods for Biomolecular Simulations by Extrapolative Langevin Dynamics
,”
J. Comput. Phys.
0021-9991,
151
, pp.
74
113
.
50.
Van de Vyver
,
H.
, 2006, “
A Fourth-Order Symplectic Exponentially Fitted Integrator
,”
Comput. Phys. Commun.
0010-4655,
174
(
4
), pp.
255
262
.
51.
Phillips
,
J.
,
Braun
,
R.
,
Wang
,
W.
,
Gumbart
,
J.
,
Tajkhorshid
,
E.
,
Villa
,
E.
,
Chipot
,
C.
,
Skeel
,
R.
,
Kale
,
L.
, and
Schulten
,
K.
, 2005, “
Scalable Molecular Dynamics With NAMD
,”
J. Comput. Chem.
0192-8651,
26
(
16
), pp.
1781
1802
.
53.
Humphrey
,
W.
,
Dalke
,
A.
, and
Schulten
,
K.
, 1996, “
VMD: Visual Molecular Dynamics
,”
J. Mol. Graphics
0263-7855,
14
(
1
), pp.
33
38
.
56.
Owens
,
J.
,
Houston
,
M.
,
Luebke
,
D.
,
Green
,
S.
,
Stone
,
J.
, and
Phillips
,
J.
, 2008, “
GPU Computing
,”
Proc. IEEE
0018-9219,
96
(
5
), pp.
879
899
.
57.
Hilber
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
(
3
), pp.
283
292
.
58.
Hughes
,
T.
, 1987,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
59.
Belytschko
,
T.
,
Liu
,
W.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
60.
Zienkiewicz
,
O.
, and
Taylor
,
R.
, 2005,
The Finite Element Method for Solid and Structural Mechanics
,
Butterworth-Heinemann
,
Oxford, UK
.
61.
Schafer
,
N.
, and
Negrut
,
D.
, 2008, “
Implicit Integration in Molecular Dynamics Project Summary
,” Technical Report TR-2008-09, Available Online at http://sbel.wisc.edu/Publications/index.htmhttp://sbel.wisc.edu/Publications/index.htm
62.
Ortega
,
J.
, and
Rheinboldt
,
W.
, 2000,
Iterative Solution of Nonlinear Equations in Several Variables
,
Society for Industrial Mathematics
.
63.
Ramachandran
,
G.
,
Kolaskar
,
A.
,
Ramakrishnan
,
C.
, and
Sasisekharan
,
V.
, 1974, “
The Mean Geometry of the Peptide Unit From Crystal Structure Data
,”
Biochim. Biophys. Acta
0006-3002,
359
(
2
), pp.
298
302
.
64.
Protein Data Base
,” Website, http://www.pdb.orghttp://www.pdb.org
65.
Bracewell
,
R.
, 1999,
The Fourier Transform and Its Applications
,
3rd ed.
,
McGraw-Hill
,
New York, NY
.
66.
Frenkel
,
D.
, and
Smit
,
B.
, 2002,
Understanding Molecular Simulation: From Algorithms to Applications
,
Academic
,
New York, NY
.
67.
Jerri
,
A.
, 1977, “
The Shannon Sampling Theorem-Its Various Extensions and Applications: A Tutorial Review
,”
Proc. IEEE
0018-9219,
65
(
11
), pp.
1565
1596
.
68.
Chan
,
T.
, and
Jackson
,
K.
, 1984, “
Nonlinearly Preconditioned Krylov Subspace Methods for Discrete Newton Algorithms
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
5
, pp.
533
542
.
69.
Brown
,
P.
, and
Saad
,
Y.
, 1990, “
Hybrid Krylov Methods for Nonlinear Systems of Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
11
, pp.
450
481
.
70.
Brown
,
P.
,
Hindmarsh
,
A.
, and
Petzold
,
L.
, 1994, “
Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems
,”
SIAM J. Sci. Comput.
,
15
, pp.
1467
1488
.
71.
Saad
,
Y.
, 2003,
Iterative Methods for Sparse Linear Systems
,
Society for Industrial Mathematics
,
Philadelphia, PA
.
72.
Andersen
,
H.
, 1983, “
RATTLE: A Velocity Version of the SHAKE Algorithm for Molecular Dynamics Calculations
,”
J. Comput. Phys.
0021-9991,
52
(
1
), pp.
24
34
.
You do not currently have access to this content.