This paper proposes a family of Lie group time integrators for the simulation of flexible multibody systems. The method provides an elegant solution to the rotation parametrization problem. As an extension of the classical generalized-α method for dynamic systems, it can deal with constrained equations of motion. Second-order accuracy is demonstrated in the unconstrained case. The performance is illustrated on several critical benchmarks of rigid body systems with high rotation speeds, and second-order accuracy is evidenced in all of them, even for constrained cases. The remarkable simplicity of the new algorithms opens some interesting perspectives for real-time applications, model-based control, and optimization of multibody systems.

1.
Wasfy
,
T.
, and
Noor
,
A.
, 2003, “
Computational Strategies for Flexible Multibody Systems
,”
Appl. Mech. Rev.
0003-6900,
56
(
6
), pp.
553
613
.
2.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
3.
Crouch
,
P.
, and
Grossman
,
R.
, 1993, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci.
0938-8794,
3
, pp.
1
33
.
4.
Munthe-Kaas
,
H.
, 1995, “
Lie-Butcher Theory for Runge-Kutta Methods
,”
BIT
0006-3835,
35
, pp.
572
587
.
5.
Munthe-Kaas
,
H.
, 1998, “
Runge-Kutta Methods on Lie Groups
,”
BIT
0006-3835,
38
, pp.
92
111
.
6.
Simo
,
J.
, and
Vu-Quoc
,
L.
, 1988, “
On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
66
, pp.
125
161
.
7.
Simo
,
J.
, and
Wong
,
K.
, 1991, “
Unconditionally Stable Algorithms for Rigid Body Dynamics That Exactly Preserve Energy and Momentum
,”
Int. J. Numer. Methods Eng.
0029-5981,
31
, pp.
19
52
.
8.
Cardona
,
A.
, and
Géradin
,
M.
, 1988, “
A Beam Finite Element Non-Linear Theory With Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
2403
2438
.
9.
Cardona
,
A.
, and
Géradin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
, pp.
801
820
.
10.
Newmark
,
N.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
85
, pp.
67
94
.
11.
Hilber
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
12.
Chung
,
J.
, and
Hulbert
,
G.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
371
375
.
13.
Arnold
,
M.
, and
Brüls
,
O.
, 2007, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
18
(
2
), pp.
185
202
.
14.
Lunk
,
C.
, and
Simeon
,
B.
, 2006, “
Solving Constrained Mechanical Systems by the Family of Newmark and α-Methods
,”
ZAMM-Journal of Applied Mathematics and Mechanics
0044-2267,
86
(
10
), pp.
772
784
.
15.
Jay
,
L.
, and
Negrut
,
D.
, 2007, “
Extensions of the HHT-Method to Differential-Algebraic Equations in Mechanics
,”
Electron. Trans. Numer. Anal.
1097-4067,
26
, pp.
190
208
.
16.
Arnold
,
M.
, 2009, “
The Generalized-α Method in Industrial Multibody System Simulation
,”
Proceedings of the Multibody Dynamics 2009, Eccomas Thematic Conference
,
K.
Arczewski
,
J.
Fraczek
, and
M.
Wojtyra
, eds.,
Warsaw University of Technology
,
Warsaw, Poland
.
17.
Celledoni
,
E.
, and
Owren
,
B.
, 2003, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
3–4
), pp.
421
438
.
18.
Bottasso
,
C.
, and
Borri
,
M.
, 1998, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
164
, pp.
307
331
.
19.
Brüls
,
O.
, and
Eberhard
,
P.
, 2008, “
Sensitivity Analysis for Dynamic Mechanical Systems With Finite Rotations
,”
Int. J. Numer. Methods Eng.
0029-5981,
74
(
13
), pp.
1897
1927
.
20.
Gonzalez
,
O.
, 1996, “
Time Integration and Discrete Hamiltonian Systems
,”
J. Nonlinear Sci.
0938-8794,
6
, pp.
449
467
.
21.
Bauchau
,
O.
, and
Bottasso
,
C.
, 1999, “
On the Design of Energy Preserving and Decaying Schemes for Flexible Nonlinear Multi-Body Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
169
, pp.
61
79
.
22.
Betsch
,
P.
, and
Steinmann
,
P.
, 2001, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
467
488
.
23.
Ibrahimbegovic
,
A.
, and
Mamouri
,
S.
, 2002, “
Energy Conserving/Decaying Implicit Time-Stepping Scheme for Nonlinear Dynamics of Three-Dimensional Beams Undergoing Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
4241
4258
.
24.
Kuhl
,
D.
, and
Crisfield
,
M.
, 1999, “
Energy-Conserving and Decaying Algorithms in Non-Linear Structural Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
569
599
.
25.
Lens
,
E.
,
Cardona
,
A.
, and
Géradin
,
M.
, 2004, “
Energy Preserving Time Integration for Constrained Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
11
(
1
), pp.
41
61
.
26.
Kane
,
C.
,
Marsden
,
J.
,
Ortiz
,
M.
, and
West
,
M.
, 2000, “
Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
49
, pp.
1295
1325
.
27.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
, 2006,
Geometric Numerical Integration—Structure-Preserving Algorithms for Ordinary Differential Equations
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
28.
Romano
,
M.
, 2008, “
Exact Analytic Solution for the Rotation of a Rigid Body Having Spherical Ellipsoid of Inertia and Subjected to a Constant Torque
,”
Celest. Mech. Dyn. Astron.
0923-2958,
100
, pp.
181
189
.
29.
Romano
,
M.
, 2008, “
Exact Analytic Solutions for the Rotation of an Axially Symmetric Rigid Body Subjected to a Constant Torque
,”
Celest. Mech. Dyn. Astron.
0923-2958,
101
, pp.
375
390
.
30.
Boothby
,
W.
, 2003,
An Introduction to Differentiable Manifolds and Riemannian Geometry
,
2nd ed.
,
Academic
,
New York
.
You do not currently have access to this content.