Accurate modeling of many engineering systems requires the integration of multibody system and large deformation finite element algorithms that are based on general constitutive models, account for the coupling between the large rotation and deformation, and allow capturing coupled deformation modes that cannot be captured using beam formulations implemented in existing computational algorithms and computer codes. In this investigation, new three-dimensional nonlinear dynamic rubber chains and belt drives models are developed using the finite element absolute nodal coordinate formulation (ANCF) that allows for a straight forward implementation of general linear and nonlinear material models for structural elements such as beams, plates, and shells. Furthermore, this formulation, which is based on a more general kinematic description, can be used to predict the cross section deformation and its coupling with the extension and bending of the belt drives and rubber chains. The ANCF cross section deformation results are validated by comparison with the results obtained using solid finite elements in the case of a simple tension test problem. The effect of the use of different linear and nonlinear constitutive laws in modeling belt drive mechanisms is also examined in this investigation. The finite element formulation presented in this paper is implemented in a general purpose three-dimensional flexible multibody algorithm that allows for developing detailed models of mechanical systems subject to general loading conditions, nonlinear algebraic constraint equations, and arbitrary large displacements that characterize belt drives and tracked vehicle dynamics. The successful integration of large deformation finite element and multibody system algorithms is shown to be necessary in order to be able to study the dynamics of complex tracked vehicles with rubber chains. A computer simulation of a three-dimensional multibody tracked vehicle model that consists of twenty rigid bodies and two flexible rubber chains is used in order to demonstrate the use of the formulations presented in this investigation.

1.
Culshaw
,
D.
, 1988, “
Rubber Tracks for Traction
,”
J. Terramech.
0022-4898,
25
, pp.
69
80
.
2.
Okello
,
J. A.
,
Dwyer
,
M. J.
, and
Cottrell
,
F. B.
, 1994, “
The Tractive Performance of Rubber Tracks and a Tractor Driving Wheel Tyre as Influenced by Design Parameters
,”
J. Agric. Eng. Res.
0021-8634,
59
, pp.
33
43
.
3.
Dwyer
,
M. J.
,
Okello
,
J. A.
, and
Scarlett
,
A. J.
, 1993, “
A Theoretical and Experimental Investigation of Rubber Tracks for Agriculture
,”
J. Terramech.
0022-4898,
30
, pp.
285
298
.
4.
Okello
,
J. A.
, 1994, “
Prediction and Experimental Validation of the Field Tractive Performance of a Rubber Track Unit
,”
J. Agric. Eng. Res.
0021-8634,
59
, pp.
163
171
.
5.
Okello
,
J. A.
,
Watany
,
M.
, and
Crolla
,
D. A.
, 1998, “
A Theoretical and Experimental Investigation of Rubber Track Performance Models
,”
J. Agric. Eng. Res.
0021-8634,
69
, pp.
15
24
.
6.
Marsili
,
A.
, and
Servadio
,
P.
, 1996, “
Compaction Effects of Rubber or Metal-Tracked Tractor Passes on Agriculture Soils
,”
Soil Tillage Res.
0167-1987,
37
, pp.
37
45
.
7.
Bando
,
K.
,
Yoshida
,
K.
, and
Hori
,
K.
, 1991, “
The Development of the Rubber Track for Small Size Bulldozers
,”
SAE Trans
,
100
, pp.
339
347
.
8.
Choi
,
J. H.
,
Lee
,
H. C.
, and
Shabana
,
A. A.
, 1998, “
Spatial Dynamics of Multibody Tracked Vehicles. Part I: Spatial Equations of Motion
,”
Veh. Syst. Dyn.
0042-3114,
29
, pp.
27
49
.
9.
Lee
,
H. C.
,
Choi
,
J. H.
, and
Shabana
,
A. A.
, 1998, “
Spatial Dynamics of Multibody Tracked Vehicles. Part II: Contact Forces and Simulation Results
,”
Veh. Syst. Dyn.
0042-3114,
29
, pp.
113
137
.
10.
Ogden
,
R. W.
, 1984,
Non-Linear Elastic Deformations
,
Dover
,
New York
.
11.
Shabana
,
A. A.
, 2008,
Computational Continuum Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
12.
Shabana
,
A. A.
, 1998A, “
Computer Implementation of the Absolute Nodal Coordinates Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
293
306
.
13.
Shabana
,
A. A.
,
Hussien
,
A. H.
, and
Escalona
,
J. L.
, 1998, “
Application of the Absolute Nodal Coordinates Formulation to Large Rotation and Large Deformation Problems
,”
ASME J. Mech. Des.
0161-8458,
120
, pp.
188
195
.
14.
Dibold
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
, 2007, “
On the Accuracy and Computational Cost of the Absolute Nodal Coordinate Formulation and the Floating Frame of Reference Formulation in Deformable Multibody Systems
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer Information in Engineering Conference (DETC2007/MSNDC-34756)
, Las Vegas, NV.
15.
Dimitrochenko
,
O.
, and
Mikkola
,
A. M.
, 2007, “
Large Deformation Triangular Plate Elements for Multibody Problems
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer Information in Engineering Conference (DETC2007/MSNDC-34741)
, Las Vegas, NV.
16.
Kim
,
H. W.
, and
Yoo
,
W. S.
, 2007, “
Experimental Validation of Two Damping Force Models for the ANCF
,”
Proceedings of ASME International Design Engineering Technical Conferences and Computer Information in Engineering Conference (DETC2007/MSNDC-34460)
, Las Vegas, NV.
17.
Sugiyama
,
H.
, and
Suda
,
Y.
, 2007, “
On the Curved Beam Element Using the Absolute Nodal Coordinates
,”
Proceedings of the ECCOMAS Thematic Conference in Multibody Dynamics
, Milan, Italy.
18.
Maqueda
,
L. G.
, and
Shabana
,
A. A.
, 2007, “
Poisson modes and General Nonlinear Constitutive Models in the Large Displacement Analysis of Beams
,”
Multibody Syst. Dyn.
1384-5640,
18
, pp.
375
396
.
19.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
606
613
.
20.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
614
621
.
21.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
, 2006, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
0924-090X,
43
, pp.
239
256
.
22.
Crisfield
,
M. A.
, 1997,
Non-Linear Finite Element Analysis of Solids and Structures, Vol. I: Essentials
,
Wiley
,
New York
.
23.
Spencer
,
A. J. M.
, 1980,
Continuum Mechanics
,
Longmans
,
London
.
24.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
25.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
, 2002, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
4
), pp.
575
581
.
26.
Dufva
,
K.
,
Kerkkänen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
, 2007, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
449
466
.
27.
Khulief
,
Y. A.
, and
Shabana
,
A. A.
, 1987, “
A Continuous Force Model for the Impact Analysis of Flexible Multi-Body Systems
,”
Mech. Mach. Theory
0094-114X,
22
(
3
), pp.
213
224
.
28.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
, 2002, “
Analysis of Belt-Drive Mechanics Using a Creep-Rate-Dependent Friction Law
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
763
771
.
29.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge, UK
.
30.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
, 2000, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
197
206
.
You do not currently have access to this content.