The history of the challenge of friction modeling is briefly reviewed. Then, this paper focuses on the modeling and simulation study of the friction related dynamics in the SIMULINK® environment, because MATLAB®/SIMULINK® are popular engineering software tools for both industry and academia. MATLAB® and SIMULINK® are the proprietary products of MathWorks, Inc. (Natick, MA). In this paper, the static friction models are studied through SIMULINK® by applying fixed and variable step sizes. The comparison shows that the static Karnopp model is not only numerically tractable but also can be inclusive of the fundamental friction characteristics of both stick-slip and correct friction predictions. Finally, this paper presents an improved Karnopp model for clutch modeling with the use of SIMULINK®, and the simulation shows that this model is computationally tractable with smooth dynamics.

1.
Olsson
,
H.
,
Astrom
,
K. J.
,
Canudas de Wit
,
C.
,
Gafvert
,
M.
, and
Lischinsky
,
P.
, 1998, “
Friction Models and Friction Compensation
,”
Eur. J. Control
0947-3580,
4
(
3
), pp.
176
195
.
2.
Makkar
,
C.
,
Dixon
,
W. E.
,
Sawyer
,
W. G.
, and
Hu
,
G.
, 2005, “
A New Continuously Differentiable Friction Model for Control System Design
,”
Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Monterey, CA, Jul. 24–28.
3.
Canudas de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
4.
Dupont
,
P.
,
Hayward
,
V.
,
Armstrong
,
B.
, and
Altpeter
,
F.
, 2002, “
Single State Elastoplastic Friction Models
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
5
), pp.
787
792
.
5.
Bonsignore
,
A.
,
Ferretti
,
G.
, and
Magnani
,
G.
, 1999, “
Analytic Formulation of the Classical Friction Model for Motion Analysis and Simulation
,”
Math. Comput. Model. Dyn. Syst.
,
5
(
1
), pp.
43
54
.
6.
Alvarez
,
L.
,
Yi
,
J.
,
Horowtz
,
R.
, and
Olmos
,
L.
, 2005, “
Dynamic Friction Model-Based Tire-Road Friction Estimation and Emergency Braking Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
127
, pp.
22
32
.
7.
Luo
,
A. C. J.
, 2005, “
A Theory for Non-Smooth Dynamic Systems on the Connectable Domains
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
10
, pp.
1
55
.
8.
Luo
,
A. C. J.
, and
Zwiegart
,
P.
, Jr.
, 2005, “
Analytical Dynamics of a Piecewise Linear Friction Oscillator Under a Periodic Excitation
,”
Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–11.
9.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
, 2005, “
Periodic Motions of a Periodically Forced Oscillator Moving on a Oscillating Belt With Dry Friction
,”
Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, Nov. 5–11.
10.
Karnopp
,
D.
, 1985, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamical Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
(
1
), pp.
100
103
.
11.
Levine
,
W. S.
, 1996,
The Control Handbook
,
CRC
,
Boca Raton, FL
, pp.
1373
1374
.
12.
1998, “
Using SIMULINK and Stateflow in Automotive Applications
,”
SIMULINK-Stateflow Technical Examples
,
The MathWorks, Inc.
,
Natick, MA
.
You do not currently have access to this content.