This work presents an investigation of the nonlinear dynamics of carbon nanotubes (CNTs) when actuated by a dc load superimposed to an ac harmonic load. Cantilevered and clamped-clamped CNTs are studied. The carbon nanotube is described by an Euler–Bernoulli beam model that accounts for the geometric nonlinearity and the nonlinear electrostatic force. A reduced-order model based on the Galerkin method is developed and utilized to simulate the static and dynamic responses of the carbon nanotube. The free-vibration problem is solved using both the reduced-order model and by solving directly the coupled in-plane and out-of-plane boundary-value problems governing the motion of the nanotube. Comparison of the results generated by these two methods to published data of a more complicated molecular dynamics model shows good agreement. Dynamic analysis is conducted to explore the nonlinear oscillation of the carbon nanotube near its fundamental natural frequency (primary-resonance) and near one-half, twice, and three times its natural frequency (secondary-resonances). The nonlinear analysis is carried out using a shooting technique to capture periodic orbits combined with the Floquet theory to analyze their stability. The nonlinear resonance frequency of the CNTs is calculated as a function of the ac load. Subharmonic-resonances are found to be activated over a wide range of frequencies, which is a unique property of CNTs. The results show that these resonances can lead to complex nonlinear dynamics phenomena, such as hysteresis, dynamic pull-in, hardening and softening behaviors, and frequency bands with an inevitable escape from a potential well.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Craighead
,
H. G.
, 2000, “
Nanoelectromechanical Systems
,”
Science
0036-8075,
290
, pp.
1532
1535
.
3.
Postma
,
H.
,
Kozinsky
,
I.
,
Husain
,
A.
, and
Roukes
,
M.
, 2005, “
Dynamic Range of Nanotube- and Nanowire-Based Electromechanical Systems
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
223105
.
4.
Gibson
,
R. F.
,
Ayorinde
,
E. O.
, and
Wen
,
Y. F.
, 2007, “
Vibrations of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
0266-3538,
67
, pp.
1
28
.
5.
Wang
,
Z. L.
,
Gao
,
R. P.
,
Poncharal
,
P.
,
de Heer
,
W. A.
,
Dai
,
Z. R.
, and
Pan
,
Z. W.
, 2001, “
Mechanical and Electrostatic Properties of Carbon Nanotubes and Nanowires
,”
Mater. Sci. Eng., C
0928-4931,
16
, pp.
3
10
.
6.
Gao
,
R. P.
,
Wang
,
Z. L.
,
Bai
,
Z. G.
,
de Heer
,
W. A.
,
Dai
,
L. M.
, and
Gao
,
M.
, 2000, “
Nanomechanics of Individual Carbon Nanotubes From Pyrolytically Grown Arrays
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
622
625
.
7.
Bak
,
J. H.
,
Kim
,
Y. D.
,
Hong
,
S. S.
,
Lee
,
B. Y.
,
Lee
,
S. R.
,
Jang
,
J. H.
,
Kim
,
M.
,
Char
,
K.
,
Hong
,
S.
, and
Park
,
Y. D.
, 2008, “
High-Frequency Micromechanical Resonators From Aluminium-Carbon Nanotube Nanolaminates
,”
Nature Mater.
1476-1122,
7
, pp.
459
463
.
8.
Poot
,
M.
,
Witkamp
,
B.
,
Otte
,
M. A.
, and
van der Zant
,
H. S. J.
, 2007, “
Modeling Suspended Carbon Nanotube Resonators
,”
Phys. Status Solidi B
0370-1972,
244
, pp.
4252
4256
.
9.
Witkamp
,
B.
,
Poot
,
M.
, and
van der Zant
,
H. S. J.
, 2006, “
Bending-Mode Vibration of a Suspended Nanotube Resonator
,”
Nano Lett.
1530-6984,
6
, pp.
2904
2908
.
10.
Dequesnes
,
M.
,
Tang
,
S.
, and
Aluru
,
N. R.
, 2004, “
Static and Dynamic Analysis of Carbon Nanotube-Based Switches
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
230
237
.
11.
Lefèvre
,
R.
,
Goffman
,
M. F.
,
Derycke
,
V.
,
Miko
,
C.
,
Forró
,
L.
,
Bourgoin
,
J. P.
, and
Hesto
,
P.
, 2005, “
Scaling Law in Carbon Nanotube Electromechanical Devices
,”
Phys. Rev. Lett.
0031-9007,
95
, p.
185504
.
12.
Sapmaz
,
S.
,
Blanter
,
Y. M.
,
Gurevich
,
L.
, and
van der Zant
,
H. S. J.
, 2003, “
Carbon Nanotubes as Nanoelectromechanical Systems
,”
Phys. Rev. B
0163-1829,
67
, p.
235414
.
13.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
, 2002, “
Parameterization of Continuum Theories for Single Wall Carbon Nanotube Switches by Molecular Dynamics Simulations
,”
J. Comput. Electron.
1569-8025,
1
, pp.
313
316
.
14.
Peng
,
H. B.
,
Chang
,
C. W.
,
Aloni
,
S.
,
Yuzvinsky
,
T. D.
, and
Zettl
,
A.
, 2007, “
Microwave Electromechanical Resonator Consisting of Clamped Carbon Nanotubes in an Abacus Arrangement
,”
Phys. Rev. B
0163-1829,
76
, p.
035405
.
15.
Li
,
C.
, and
Chou
,
T. W.
, 2004, “
Mass Detection Using Carbon Nanotube-Based Nanomechanical Resonators
,”
Appl. Phys. Lett.
0003-6951,
84
, pp.
5246
5248
.
16.
Greaney
,
P. A.
, and
Grossman
,
J. C.
, 2007, “
Nanomechanical Energy Transfer and Resonance Effects in Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
98
, p.
125503
.
17.
Rabieirad
,
L.
,
Kim
,
S.
,
Shim
,
M.
, and
Mohammadi
,
S.
, 2005, “
Doubly Clamped Single-Walled Carbon Nanotube Resonators Operating in MHz Frequencies
,”
Proceedings of the 2005 Fifth IEEE Conference on Nanotechnology
, Nagoya, Japan, July.
18.
Babic
,
B.
,
Furer
,
J.
,
Sahoo
,
S.
,
Farhangfar
,
S.
, and
Schonenberger
,
C.
, 2003, “
Intrinsic Thermal Vibrations of Suspended Doubly Clamped Single-Wall Carbon Nanotubes
,”
Nano Lett.
1530-6984,
3
, pp.
1577
1580
.
19.
Sazonova
,
V.
,
Yaish
,
Y.
,
Üstünel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
, 2004, “
A Tunable Carbon Nanotubes Electromechanical Oscillator
,”
Nature (London)
0028-0836,
431
, pp.
284
287
.
20.
Garcia-Sanchez
,
D.
,
San Paulo
,
A.
,
Esplandiu
,
M. J.
,
Perez-Murano
,
F.
,
Forrò
,
L.
,
Aguasca
,
A.
, and
Bachtold
,
A.
, 2007, “
Mechanical Detection of Carbon Nanotube Resonator Vibrations
,”
Phys. Rev. Lett.
0031-9007,
99
, p.
085501
.
21.
Ke
,
C. H.
,
Espinosa
,
H. D.
, and
Pugno
,
N.
, 2005, “
Numerical Analysis of Nanotube-Based NEMS Devices—Part II: Role of Finite Kinematics, Stretching and Charge Concentrations
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
726
731
.
22.
Pugno
,
N.
,
Ke
,
C. H.
, and
Espinosa
,
H. D.
, 2005, “
Analysis of Doubly Clamped Nanotube Devices in the Finite Deformation Regime
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
445
449
.
23.
Ke
,
C. H.
, and
Espinosa
,
H. D.
, 2005, “
Numerical Analysis of Nanotube-Based NEMS Devices—Part I: Electrostatic Charge Distribution on Multiwalled Nanotubes
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
721
725
.
24.
Ke
,
C. H.
, and
Espinosa
,
H. D.
, 2006, “
In Situ Electron Microscopy Electromechanical Characterization of a Bistable NEMS Device
,”
Small
1613-6810,
2
(
12
), pp.
1484
1489
.
25.
Ke
,
C. H.
,
Pugno
,
N.
,
Peng
,
B.
, and
Espinosa
,
H. D.
, 2005, “
Experiments and Modeling of Carbon Nanotube-Based NEMS Devices
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1314
1333
.
26.
Liu
,
J. Z.
,
Zheng
,
Q.
, and
Jiang
,
Q.
, 2001, “
Effect of a Rippling Mode on Resonances of Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
4843
4846
.
27.
Kim
,
P.
and
Lieber
,
C. M.
, 1999, “
Nanotube Nanotweezers
,”
Science Magazine
0036-0875,
286
(
5447
), pp.
2148
2150
.
28.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
0036-8075,
283
, pp.
1513
1516
.
29.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
T. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
, 1998, “
Young’s Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
0163-1829,
58
, pp.
14013
14019
.
30.
Dujardin
,
E.
,
Derycke
,
V.
,
Goffman
,
M. F.
,
Lefèvre
,
R.
, and
Bourgoin
,
J. P.
, 2005, “
Self-Assembled Switches Based on Electroactuated Multiwalled Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
87
, p.
193107
.
31.
Isacsson
,
A.
, and
Kinaret
,
J. M.
, 2008, “
Parametric Resonances in Electrostatically Interacting Carbon Nanotube Arrays
,”
Phys. Rev. B
0163-1829,
79
, p.
165418
.
32.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2002, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
12
, pp.
759
766
.
33.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2005, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
0924-090X,
41
, pp.
211
236
.
34.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
, 2003, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
0924-090X,
31
, pp.
91
117
.
35.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2005, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
1840
1847
.
36.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
153
163
.
37.
Yu
,
M. F.
, 2004, “
Fundamental Mechanical Properties of Carbon Nanotubes: Current Understanding and the Related Experimental Studies
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
271
278
.
38.
Arafat
,
H. N.
, 1999, “
Nonlinear Response of Cantilever Beams
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
39.
Younis
,
M. I.
, and
Arafat
,
H. N.
, 2008, “
Investigation of the Effect of Nonlinearities on the Response of Cantilever Microbeams Under Mechanical Shock and Electrostatic Loading
,”
Proceedings of the SEM XI International Congress and Exposition on Experimental and Applied Mechanics
, Orlando, FL, Jun., Paper No. 230.
40.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
1057-7157,
12
, pp.
672
680
.
42.
Akita
,
S.
,
Nakayama
,
Y.
,
Mizooka
,
S.
,
Takano
,
Y.
,
Okawa
,
T.
,
Miyatake
,
Y.
,
Yamanaka
,
S.
, and
Tsuji
,
M.
, 2001, “
Nanotweezers Consisting of Carbon Nanotubes Operating in an Atomic Force Microscope
,”
Appl. Phys. Lett.
0003-6951,
79
(
11
), pp.
1691
1694
.
44.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
, 2004,
Linear and Nonlinear Structural Mechanics
,
Wiley
,
New York
.
45.
Abdel-Rahman
,
E. M.
,
Emam
,
S. A.
, and
Nayfeh
,
A. H.
, 2003, “
A Generalized Model of Electrically Actuated Microbeam-Based MEMS Devices
,”
Proceedings of the DETC.03 ASME 2003 Design Engineering Technical Conference and Computers and Information in Engineering Conference
, Chicago, IL, Sept.
46.
Dequesnes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
, 2002, “
Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
Nanotechnology
0957-4484,
13
, pp.
120
131
.
47.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
48.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 2001,
Nonlinear Dynamics and Chaos
,
Wiley
,
New York
.
49.
Üstünel
,
H.
,
Roundy
,
D.
, and
Arias
,
T. A.
, 2005, “
Modeling a Suspended Nanotube Oscillator
,”
Nano Lett.
1530-6984,
5
, pp.
523
526
.
50.
Wang
,
F.
,
Dukovic
,
G.
,
Brus
,
L. E.
, and
Heinz
,
T. F.
, 2005, “
The Optical Resonances in Carbon Nanotubes Arise From Excitations
,”
Science
0036-8075,
308
, pp.
838
841
.
51.
Wang
,
F.
,
Dukovic
,
G.
,
Brus
,
L. E.
, and
Heinz
,
T. F.
, 2004, “
Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes
,”
Phys. Rev. Lett.
0031-9007,
92
, p.
177401
.
52.
Mikata
,
Y.
, 2007, “
Complete Solution of Elastica for a Clamped-Hinged Beam, and Its Applications to a Carbon Nanotube
,”
Acta Mech.
0001-5970,
190
, pp.
133
150
.
53.
Yakobson
,
B.
,
Brabec
,
C.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
, pp.
2511
2514
.
54.
Leung
,
Y. T.
,
Guo
,
X.
,
He
,
X. Q.
, and
Kitipornchai
,
S.
, 2005, “
A Continuum Model for Zigzag Single-Walled Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
083110
.
You do not currently have access to this content.