Intrinsic localized modes are localization events caused by intrinsic nonlinearities within an array of perfectly periodic coupled oscillators. Recent developments in microscale fabrication techniques have allowed for the studies of this phenomenon in micro-electromechanical systems. Studies have also identified a relationship between the spatial profiles of intrinsic localized modes and forced nonlinear vibration modes, as well as a potential sensitivity to fundamental frequency relationships of one-to-one and three-to-one between adjacent oscillators. For the system considered, the one-to-one frequency relationship is determined to provide nonideal conditions for studying intrinsic localized modes. The influence of the three-to-one frequency relationship on the behavior of the intrinsic localized modes is studied with analytical methods and numerical simulations by tuning the fundamental frequencies of the oscillators. While the perfect tuning condition is not determined to produce a unique phenomenon, the number and energy concentration of the localization events are found to increase with the increased frequency ratio, which results in a decrease in the effective coupling stiffness within the array.

1.
Anderson
,
P. W.
, 1958, “
Absence of Diffusion in Certain Random Lattices
,”
Phys. Rev.
0096-8250,
109
, pp.
1492
1505
.
2.
Sievers
,
A. J.
, and
Takeno
,
S.
, 1988, “
Intrinsic Localized Modes in Anharmonic Crystals
,”
Phys. Rev. Lett.
0031-9007,
61
(
8
), pp.
970
973
.
3.
Fleischer
,
J. W.
,
Segev
,
M.
,
Efremidis
,
N. K.
, and
Christodoulides
,
D. N.
, 2003, “
Observation of Two-Dimensional Discrete Solitons in Optically Induced Nonlinear Photonic Lattices
,”
Nature (London)
0028-0836,
422
, pp.
147
150
.
4.
Campbell
,
D. K.
,
Flach
,
S.
, and
Kivshar
,
V. S.
, 2004, “
Localizing Energy Through Nonlinearity and Discreteness
,”
Phys. Today
0031-9228,
57
(
1
), pp.
43
49
.
5.
Ustinov
,
A. V.
, 2003, “
Imaging of Discrete Breathers
,”
Chaos
1054-1500,
13
, pp.
716
724
.
6.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2003, “
Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array
,”
Phys. Rev. Lett.
0031-9007,
90
, pp.
044102
.
7.
Sato
,
M.
,
Hubbard
,
B. E.
,
English
,
L. Q.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
, 2003, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
1054-1500,
13
, pp.
702
715
.
8.
Dauxois
,
T.
,
Peyrard
,
M.
, and
Willis
,
C. R.
, 1993, “
Discrete Effects on the Formation and Propagation of Breathers in Nonlinear Klein-Gordon Equations
,”
Phys. Rev. E
1063-651X,
48
, pp.
4768
4778
.
9.
Balachandran
,
B.
, and
Li
,
H.
, 2003, “
Nonlinear Phenomena In Microelectromechanical Resonators
,”
Proceedings of the IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics
, pp.
97
106
.
10.
Dick
,
A. J.
, and
Balachandran
,
B.
, 2005, “
Parametric Identification Of Piezoelectric Microscale Resonators
,”
Proceedings of the ENOC
, pp.
1
10
, Paper No. 19-239.
11.
Li
,
H.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Nonlinear Free and Forced Oscillations of Piezoelectric Microresonators
,”
J. Micromech. Microeng.
0960-1317,
16
(
2
), pp.
356
367
.
12.
Dick
,
A. J.
,
Balachandran
,
B.
,
DeVoe
,
D. L.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Parametric Identification of Piezoelectric Microscale Resonators
,”
J. Micromech. Microeng.
0960-1317,
16
(
8
), pp.
1593
1601
.
13.
Lifshitz
,
R.
, and
Cross
,
M. C.
, 2003, “
Response of Parametrically Driven Nonlinear Couple Oscillators With Applications to Micromechanical and Nanomechanical Resonator Arrays
,”
Phys. Rev. B
0163-1829,
67
, p.
134302
.
14.
Buks
,
E.
, and
Roukes
,
M. L.
, 2002, “
Electrically Tunable Collective Response in a Coupled Micromechanical Array
,”
J. Microelectromech. Syst.
1057-7157,
11
(
6
), pp.
802
807
.
15.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2006, “
Nonlinear Vibration Modes and Energy Localization in Micro-Resonator Arrays
,”
Proceedings of the IUTAM Symposium on Dynamics and Control of Nonlinear Systems With Uncertainty
.
16.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2008, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
0924-090X,
54
, pp.
13
29
.
17.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
, and
Craighead
,
H. G.
, 2004, “
Optical Manipulation of Intrinsic Localized Vibrational Energy in Cantilever Arrays
,”
Europhys. Lett.
0295-5075,
66
, pp.
318
323
.
18.
Sato
,
M.
,
Hubbard
,
B. E.
, and
Sievers
,
A. J.
, 2006, “
Colloquium: Nonlinear Energy Localization and Its Manipulation in Micromechanical Oscillator Arrays
,”
Rev. Mod. Phys.
0034-6861,
78
(
1
), pp.
137
157
.
19.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
, 2007, “
Internal Resonance in Microbeam Arrays Subject to Electrodynamical Parametric Excitation
,”
Proceedings of the ASME IDETC/CIE
, pp.
1
10
, Paper No. DETC2007-35017.
20.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
, 2008, “
Nonlinear Internal Resonances of a Microbeam Array Near the Pull-In Point
,”
Proceedings of the Sixth ENOC
.
21.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr.
, 2007, “
Internal Resonance and Localization in Micro-Resonator Arrays
,”
Proceedings of the ASME IDETC/CIE
, p.
35099
.
22.
Nayfeh
,
A. H.
, 2000,
Nonlinear Interactions: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
23.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
24.
Pak
,
C. H.
, 1999,
Nonlinear Normal Modes Dynamics: For Two Degree-of-Freedom Systems
,
Inha University Press
,
Seoul, South Korea
.
You do not currently have access to this content.