This paper describes a novel method for the modeling of intermittent contact in multi-rigid-body problems. We use a complementarity based time-stepping scheme in Featherstone’s divide and conquer framework to efficiently model the unilateral and bilateral constraints in the system. The time-stepping scheme relies on impulse-based equations and does not require explicit collision detection. A set of complementarity conditions is used to model the interpenetration constraint and a linearized friction cone is used to yield a linear complementarity problem. The divide and conquer framework ensures that the size of the resulting mixed linear complementarity problem is independent of the number of bilateral constraints in the system. This makes the proposed method especially efficient for systems where the number of bilateral constraints is much greater than the number of unilateral constraints. The method is demonstrated by applying it to a falling 3D double pendulum.

1.
Lötstedt
,
P.
, 1982, “
Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints
,”
SIAM J. Appl. Math.
0036-1399,
42
(
2
), pp.
281
296
.
2.
Pereira
,
M. S.
, and
Nikravesh
,
P.
, 1996, “
Impact Dynamics of Multibody Systems With Frictional Contact Using Joint Coordinates and Canonical Equations of Motion
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
53
71
.
3.
Pfeiffer
,
F.
, 2003, “
The Idea of Complementarity in Multibody Dynamics
,”
Arch. Appl. Mech.
0939-1533,
72
(
11–12
), pp.
807
816
.
4.
Trinkle
,
J.
,
Pang
,
D.
,
Sudarsky
,
S.
, and
Lo
,
G.
, 1997, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction
,”
Z. Angew. Math. Mech.
0044-2267,
77
(
4
), pp.
267
279
.
5.
Barhorst
,
A.
, 1998, “
On Modelling Variable Structure Dynamics of Hybrid Parameter Multibody Systems
,”
J. Sound Vib.
0022-460X,
209
(
4
), pp.
571
592
.
6.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 2000,
Multibody Dynamics With Unilateral Constraints
(
CISM Courses and Lectures
Vol.
421
), International Centre for Mechanical Sciences,
Springer
,
New York
.
7.
Pfeiffer
,
F. G.
, 2001, “
Applications of Unilateral Multibody Dynamics
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
2609
2628
.
8.
Moreau
,
J. J.
, 1988, “
Unilateral Contacts and Dry Friction in Finite Freedom Dynamics
,”
Non-Smooth Mechanics and Applications
(
CISM Courses and Lectures
Vol.
302
),
Springer
,
Berlin
.
9.
Baraff
,
D.
, 1993, “
Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies
,”
Algorithmica
0178-4617,
10
(
2–4
), pp.
292
352
.
10.
Stewart
,
D. E.
, and
Trinkle
,
J. C.
, 1996, “
An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2673
2691
.
11.
Glocker
,
C.
, and
Pfeiffer
,
F.
, 1995, “
Multiple Impacts With Friction in Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
7
, pp.
471
497
.
12.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics With Unilateral Contacts
(
Wiley Series in Nonlinear Sciences
),
Wiley
,
New York
.
13.
Pfeiffer
,
F. G.
, 2003, “
Unilateral Multibody Dynamics
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
1
, pp.
311
326
.
14.
Featherstone
,
R.
, 1999, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 1: Basic Algorithm
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
867
875
.
15.
Featherstone
,
R.
, 1999, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 2: Trees, Loops, and Accuracy
,”
Int. J. Robot. Res.
0278-3649,
18
(
9
), pp.
876
892
.
16.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
, 2007, “
Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
48
(
1–2
), pp.
199
215
.
17.
Cottle
,
R. W.
,
Pang
,
J. S.
, and
Stone
,
R. E.
, 1992,
The Linear Complementarity Problem
,
Academic
,
New York
.
18.
Haug
,
E. J.
,
Wu
,
S. C.
, and
Yang
,
S. M.
, 1986, “
Dynamics of Mechanical Systems With Coulomb Friction, Stiction, Impact and Constraint Addition-Deletion—I Theory
,”
Mech. Mach. Theory
0094-114X,
21
(
5
), pp.
401
406
.
19.
Schwertassek
,
R.
, 1994, “
Reduction of Multibody Simulation Time by Appropriate Formulation of the Dynamics System Equations
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
,
NATO ASI
, pp.
447
482
.
20.
Anitescu
,
M.
, 2003, “
A Fixed Time-Step Approach for Multi-Body Dynamics With Contact and Friction
,” International Conference on Intelligent Robots and Systems, Las Vegas, NV, 27–31 Oct. 2003, Vol. 4, pp. 3725–3731.
21.
Mirtich
,
B.
, 1996, “
Impulse-Based Dynamic Simulation of Rigid Body Systems
,” Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA.
22.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics: Theory and Application
,
McGraw-Hill
,
New York
.
23.
Roberson
,
R. E.
, and
Schwertassek
,
R.
, 1988,
Dynamics of Multibody Systems
,
Springer-Verlag
,
Berlin
.
24.
Ferris
,
M. C.
, and
Munson
,
T. S.
, 1999, “
Interfaces to Path 3.0: Design, Implementation and Usage
,”
Comput. Optim. Appl.
0926-6003,
12
(
1–3
), pp.
207
227
.
25.
Mukherjee
,
R. M.
, and
Anderson
,
K. S.
, 2007, “
Efficient Methodology for Multibody Simulations With Discontinuous Changes in System Definition
,”
Multibody Syst. Dyn.
1384-5640,
18
(
2
), pp.
145
168
.
27.
Schaechter
,
D. B.
,
Levinson
,
D. A.
, and
Kane
,
T. R.
, 1982,
AUTOLEV User’s Manual
,
On-Line Dynamics Inc.
,
Sunnyvale, CA
.
You do not currently have access to this content.