This paper investigates the increased stability behavior commonly observed in low-speed machining. In the past, this improved stability has been attributed to the energy dissipated by the interference between the workpiece and the tool relief face. In this study, an alternative physical explanation is described. In contrast to the conventional approach, which uses a point force acting at the tool tip, the cutting forces are distributed over the tool-chip interface. This approximation results in a second-order delayed integrodifferential equation for the system that involves a short and a discrete delay. A method for determining the stability of the system for an exponential shape function is described, and temporal finite element analysis is used to chart the stability regions. Comparisons are then made between the stability charts of the point force and the distributed force models for continuous and interrupted turning.

1.
Tobias
,
S. A.
, and
Fishwick
,
W.
, 1958, “Theory of Regenerative Machine Tool Chatter,” The Engineer, 205, pp. 16–23.
2.
Cook
,
N. H.
, 1959, “
Self-Excited Vibrations in Metal Cutting
,”
ASME J. Eng. Ind.
0022-0817,
81
, pp.
183
186
.
3.
Tlusty
,
J.
, and
Polacek
,
M.
, 1963, “
The Stability of Machine Tools Against Self-Excited Vibrations in Machining
,”
Proceedings of the ASME International Research in Production Engineering
, pp.
465
474
.
4.
Merrit
,
H. E.
, 1965, “
Theory of Self-Excited Machine-Tool Chatter, Contribution to Machine-Tool Chatter Research-1
,”
ASME J. Eng. Ind.
0022-0817,
87
, pp.
447
454
.
5.
Boyer
,
R. R.
, 1996, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng., A
0921-5093,
213
(
1–2
), pp.
103
114
.
6.
2003,
Titanium and Titanium Alloys: Fundamentals and Applications
,
C.
Leyens
and
M.
Peters
, eds.,
Wiley-VCH
,
Weinheim, Germany
.
7.
Sisson
,
T. R.
, and
Kegg
,
R. L.
, 1969, “
An Explanation of Low-Speed Chatter Effects
,”
ASME J. Eng. Ind.
0022-0817,
91
(
4
), pp.
951
958
.
8.
Tlusty
,
J.
, and
Heczko
,
O.
, 1980, “
Improving Tests of Damping in the Cutting Process
,”
Proceedings of the Eighth North American Manufacturing Research Conference
, pp.
372
376
.
9.
Balakrishnan
,
P.
,
Eman
,
K. F.
, and
Wu
,
S. M.
, 1981, “
Analysis of Cutting Process Damping
,”
Proceedings of the Ninth North American Manufacturing Research Conference
, pp.
247
249
.
10.
Tlusty
,
J.
, 1978, “
Analysis of the State of Research in Cutting Dynamics
,”
CIRP Ann.
0007-8506,
27
(
2
), pp.
583
589
.
11.
Minis
,
I.
,
Magrab
,
E.
, and
Pandelidis
,
I.
, 1990, “
Improved Methods for the Prediction of Chatter in Turning, Part 2: Determination of Cutting Process Parameters
,”
ASME J. Eng. Ind.
0022-0817,
112
(
1
), pp.
21
27
.
12.
Wu
,
D. W.
, 1988, “
Application of a Comprehensive Dynamic Cutting Force Model to Orthogonal Wave-Generating Processes
,”
Int. J. Mech. Sci.
0020-7403,
30
(
8
), pp.
581
600
.
13.
Jemielniak
,
K.
, and
Widota
,
A.
, 1989, “
Numerical Simulation of Non-Linear Chatter Vibration in Turning
,”
Int. J. Mach. Tools Manuf.
0890-6955,
29
(
2
), pp.
239
247
.
14.
Shaw
,
M.
, and
DeSalvo
,
G. J.
, 1970, “
On the Plastic Flow Beneath a Blunt Axisymmetric Indenter
,”
ASME J. Eng. Ind.
0022-0817,
92
, pp.
480
494
.
15.
Tarng
,
Y. S.
,
Young
,
H. T.
, and
Lee
,
B. Y.
, 1994, “
An Analytical Model of Chatter Vibration in Metal Cutting
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
(
2
), pp.
183
197
.
16.
Lee
,
B. Y.
,
Tarng
,
Y. S.
, and
Ma
,
S. C.
, 1995, “
Modeling of the Process Damping Force in Chatter Vibration
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
(
7
), pp.
951
962
.
17.
Chiou
,
R. Y.
, and
Liang
,
S. Y.
, 1998, “
Chatter Stability of a Slender Cutting Tool in Turning With Tool Wear Effects
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
(
4
), pp.
315
327
.
18.
Clancy
,
B. E.
, and
Shin
,
Y. C.
, 2002, “
A Comprehensive Chatter Prediction Model for Face Turning Operation Including Tool Wear Effect
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
9
), pp.
1035
1044
.
19.
Chandiramani
,
N. K.
, and
Pothala
,
T.
, 2006, “
Dynamics of 2-DOF Regenerative Chatter During Turning
,”
J. Sound Vib.
0022-460X,
290
, pp.
448
464
.
20.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
Wiley
,
New York
.
21.
Stépán
,
G.
, 1997,
Dynamics and Chaos in Manufacturing Processes
,
F.
Moon
, ed.,
Wiley
,
New York
, pp.
165
192
.
22.
Mann
,
B. P.
, and
Patel
,
B.
, “
Stability of Delay Equations Written as State Space Models
,”
J. Vib. Control
1077-5463 (to be published).
23.
Jordan
,
D. W.
, and
Smith
,
P.
, 1999,
Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems
, 3rd ed.,
Oxford University Press
,
Oxford
.
24.
Szalai
,
R.
, and
Stépán
,
G.
, 2006, “
Lobes and Lenses in the Stability Chart of Interrupted Turning
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
205
211
.
25.
Altintas
,
Y.
, 2000,
Manufacturing Automation
,
Cambridge University Press
,
New York
.
26.
Zorev
,
N.
, 1963, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
International Research in Production Engineering
,
ASME
,
New York
, pp.
42
49
.
27.
Bailey
,
J. A.
, 1975, “
Friction in Metal Machining—Mechanical Aspects
,”
Wear
0043-1648,
31
, pp.
243
275
.
28.
Arsecularatne
,
J. A.
, 1997, “
On the Tool-Chip Interface Stress Distributions, Ploughing Force and Size Effect in Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
7
), pp.
885
899
.
29.
Madhavan
,
V.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
, 2002, “
Direct Observations of the Chip-Tool Interface in the Low Speed Cutting of Pure Metals
,”
ASME J. Tribol.
0742-4787,
124
, pp.
617
626
.
30.
Mann
,
B. P.
, and
Young
,
K. A.
, 2006, “
An Empirical Approach for Delayed Oscillator Stability and Parametric Identification
,”
Proc. R. Soc. London, Ser. A
0950-1207,
462
, pp.
2145
2160
.
31.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davis
,
M. A.
, 2003, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
220
225
.
You do not currently have access to this content.