This paper presents an efficient hybrid method for dynamic analysis of a flexible multibody system. This hybrid method is the combination of a penalty and augmented Lagrangian formulation with the mass-orthogonal projections method based on the absolute nodal coordinate formulation (ANCF). The characteristic of the ANCF that the mass matrix is constant and both Coriolis and centrifugal terms vanish in the equations of motion make the proposed method computationally efficient. Within the proposed method, no additional unknowns, such as the Lagrange multipliers in the Newmark method, are introduced, and the number of equations does not depend on the number of constraint conditions. Furthermore, conventional integration stabilization methods, such as Baumgarte’s method. are unnecessary. Therefore, the proposed method is particularly suitable for systems with redundant constraints, singular configurations, or topology changes. Comparing results from different methods in terms of efficiency and accuracy has shown that the proposed hybrid method is efficient and has good convergence characteristics for both stiff and flexible multibody systems.

1.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
New York
.
2.
Shabana
,
A. A.
, 1997, “
Definition of the Slopes and Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
339
348
.
3.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements Theory
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
606
613
.
4.
Shabana
,
A. A.
, 1996, “
An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,” Technical Report No. MBS96-1-UIC.
5.
Shabana
,
A. A.
, 1997, “
Flexible Multi-Body Dynamics Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
189
222
.
6.
García-Vallejo
,
D.
,
Mayo
,
J.
, and
Escalona
,
J. L.
, 2004, “
Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
35
, pp.
313
329
.
7.
Eberhard
,
P.
, and
Schiehlen
,
W.
, 2006, “
Computational Dynamics of Multibody Systems History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
3
12
.
8.
Yoo
,
W. S.
,
Dmitrochenko
,
O.
, and
Pogorelov
,
D. Y.
, 2005, “
Review of Finite Elements Using Absolute Nodal Coordinates for Large-Deformation Problems and Matching Physical Experiments
,” Paper No. DETC2005-84720.
9.
Seo
,
J. -H.
,
Kim
,
S. -W.
,
Jung
,
I. -H.
,
Park
,
T. -W.
,
Mok
,
J. -Y.
,
Kim
,
Y. -G.
, and
Chai
,
J. -B.
, 2006, “
Dynamic Analysis of a Pantograph-Catenary System Using Absolute Nodal Coordinates
,”
Veh. Syst. Dyn.
,
44
(
8
), pp.
615
630
. 0042-3114
10.
Kerkkanen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A.
, 2006, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
0924-090X,
43
, pp.
239
256
.
11.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
12.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
13.
Bayo
,
E.
, and
Avello
,
A.
, 1994, “
Singularity-Free Augmented Lagrangian Algorithms for Constraint Multibody Dynamics
,”
Nonlinear Dyn.
,
5
, pp.
209
231
. 0924-090X
14.
Newmark
,
N. M.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
,
85
, pp.
67
94
. 0044-7951
15.
Bayo
,
E.
, and
Ledesma
,
R.
, 1996, “
Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
9
, pp.
113
130
.
16.
García De Jalón
,
J.
,
Unda
,
J.
, and
Avello
,
A.
, 1986, “
Natural Coordinates for the Computer Analysis of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
, pp.
309
327
.
17.
Omar
,
A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
0022-460X,
243
(
3
), pp.
565
576
.
18.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
20.
Bayo
,
E.
,
Garcia De Jalon
,
J.
, and
Serna
,
M. A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
21.
Garcia De Jalon
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems the Real-Time Challenge
,
Springer
,
New York
.
22.
Broyden
,
C. G.
, 1965, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
0025-5718,
19
(
92
), pp.
577
593
.
You do not currently have access to this content.