The premise of this work is that the presence of high stiffness and/or frictional contact/impact phenomena limits the effective use of high order integration formulas when numerically investigating the time evolution of real-life mechanical systems. Producing a numerical solution relies most often on low-order integration formulas of which the paper investigates three alternatives: Newmark, HHT, and order 2 BDFs. Using these methods, a first set of three algorithms is obtained as the outcome of a direct index-3 discretization approach that considers the equations of motion of a multibody system along with the position kinematic constraints. The second batch of three algorithms draws on the HHT and BDF integration formulas and considers, in addition to the equations of motion, both the position and velocity kinematic constraint equations. Numerical experiments are carried out to compare the algorithms in terms of several metrics: (a) order of convergence, (b) energy preservation, (c) velocity kinematic constraint drift, and (d) efficiency. The numerical experiments draw on a set of three mechanical systems: a rigid slider-crank, a slider-crank with a flexible body, and a seven body mechanism. The algorithms investigated show good performance in relation to the asymptotic behavior of the integration error and, with one exception, result in comparable CPU simulation times with a small premium being paid for enforcing the velocity kinematic constraints.

1.
Haug
,
E. J.
, 1989,
Computer-Aided Kinematics and Dynamics of Mechanical Systems
, Vol.
I
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Shabana
,
A. A.
, 2005,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge
.
3.
Abraham
,
R.
, and
Marsden
,
J. E.
, 1985,
Foundations of Mechanics
,
Addison-Wesley
,
Reading, MA
.
4.
Arnold
,
V.
, 1989,
Mathematical Methods of Classical Mechanics
,
Springer
,
New York
.
5.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
, 1989,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
6.
Lubich
,
C.
, and
Hairer
,
E.
, 1989, “
Automatic Integration of the Euler–Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12
, pp.
77
90
.
7.
Hairer
,
E.
, and
Wanner
,
G.
, 1991,
Solving Ordinary Differential Equations
, Vol.
II
(
Computational Mathematics
)
Springer-Verlag
,
Berlin
.
8.
Gear
,
C. W.
, 1971,
Numerical Initial Value Problems of Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Bauchau
,
O.
, and
Laulusa
,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, pp.
011005
.
10.
Potra
,
F.
, and
Rheinboldt
,
W. C.
, 1991. “
On the Numerical Solution of Euler–Lagrange Equations
,”
Mech. Struct. Mach.
0890-5452,
19
(
1
), pp.
1
18
.
11.
Rheinboldt
,
W. C.
, 1984, “
Differential-Algebraic Systems as Differential Equations on Manifolds
,”
Math. Comput.
0025-5718,
43
, pp.
473
482
.
12.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
,
104
, pp.
247
255
. 1050-0472
13.
Liang
,
C. D.
, and
Lance
,
G. M.
, 1987, “
A Differentiable Null-Space Method for Constrained Dynamic Analysis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
405
410
.
14.
Yen
,
J.
, 1993, “
Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
30
(
2
), pp.
553
558
.
15.
Alishenas
,
T.
, 1992, “
Zur numerischen behandlungen, stabilisierung durch projection und modellierung mechanischer systeme mit nebenbedingungen und invarianten
,” Ph.D. thesis, Royal Institute of Technology, Stockholm.
16.
Mani
,
N.
,
Haug
,
E.
, and
Atkinson
,
K.
, 1985, “
Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
82
87
.
17.
Haug
,
E. J.
,
Negrut
,
D.
, and
Iancu
,
M.
, 1997, “
A State-Space Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics
,”
Mech. Struct. Mach.
0890-5452,
25
(
3
), pp.
311
334
.
18.
Negrut
,
D.
,
Haug
,
E. J.
, and
German
,
H. C.
, 2003, “
An Implicit Runge–Kutta method for Integration of Differential-Algebraic Equations of Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
9
(
2
), pp.
121
142
.
19.
Orlandea
,
N.
,
Chace
,
M. A.
, and
Calahan
,
D. A.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part I and Part II
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
773
784
.
20.
Gear
,
C. W.
,
Gupta
,
G.
, and
Leimkuhler
,
B.
, 1985, “
Automatic Integration of the Euler–Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
,
12–13
, pp.
77
90
. 0377-0427
21.
Fuhrer
,
C.
, and
Leimkuhler
,
B. J.
, 1991, “
Numerical Solution of Differential-Algebraic Equations for Constrained Mechanical Motion
,”
Numer. Math.
0029-599X,
59
(
1
), pp.
55
69
.
22.
Ascher
,
U. M.
, and
Petzold
,
L. R.
, 1993, “
Stability of Computational Methods for Constrained Dynamics Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
14
(
1
), pp.
95
120
.
23.
Ascher
,
U. M.
,
Chin
,
H.
, and
Reich
,
S.
, 1994, “
Stabilization of DAEs and Invariant Manifolds
,”
Numer. Math.
0029-599X,
67
(
2
) pp.
131
149
.
24.
Ascher
,
U. M.
,
Chin
,
H.
,
Petzold
,
L.
, and
Reich
,
S.
, 1995, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds
,”
Mech. Struct. Mach.
0890-5452,
23
(
2
), pp.
135
157
.
25.
Lubich
,
C.
,
Engstler
,
C.
,
Nowak
,
U.
, and
Pohle
,
U.
, 1995, “
MEXX—Numerical Software for the Integration of Constrained Mechanical Multibody Systems
,”
Mech. Based Des. Struct. Mach.
1539-7734,
23
, pp.
473
495
.
26.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2003, “
Robust Integration Schemes for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
395
420
.
27.
Hughes
,
T. J. R.
, 1987,
Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
28.
Geradin
,
M.
, and
Rixen
,
D.
, 1994,
Mechanical Vibrations: Theory and Application to Structural Dynamics
,
Wiley
,
New York
.
29.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
30.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
60
(
2
), pp.
371
375
.
31.
Cardona
,
A.
, and
Geradin
,
M.
, 1989, “
Time Integration of the Equation of Motion in Mechanical Analysis
,”
Comput. Struct.
0045-7949,
33
, pp.
801
820
.
32.
Yen
,
J.
,
Petzold
,
L.
, and
Raha
,
S.
, 1998, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
158
, pp.
341
355
.
33.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
, 2007, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
(1), pp.
73
85
.
34.
Arnold
,
M.
, and
Bruls
,
O.
, 2007, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,” Martin Luther University, Technical Report No. 9-2007.
35.
Lunk
,
C.
, and
Simeon
,
B.
, 2006, “
Solving Constrained Mechanical Systems by the Family of Newmark and α-Methods
,”
Z. Angew. Math. Mech.
0044-2267,
86
, pp.
772
784
.
36.
Jay
,
L. O.
, and
Negrut
,
D.
, 2007, “
Extensions of the HHT-α Method to Differential-Algebraic Equations in Mechanics
,”
Electron. Trans. Numer. Anal.
1097-4067,
26
, pp.
190
208
.
37.
Jay
,
L. O.
, and
Negrut
,
D.
, 2008, “
A Second Order Extension of the Generalized-α Method for Constrained Systems in Mechanics
,” unpublished.
38.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
, 2007, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput. (USA)
,
3
, pp.
395
420
. 1064-8275
39.
Newmark
,
N. M.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
0044-7951,
112
, pp.
67
94
.
40.
1990,
Multibody Systems Handbook
,
W.
Schiehlen
, ed.,
Springer
,
New York
.
41.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
,
New York
.
42.
Khude
,
N.
, and
Negrut
,
D.
, 2007, “
A MATLAB Implementation of the Seven-Body Mechanism for Implicit Integration of the Constrained Equations of Motion
,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2007-07.
43.
Lötstedt
,
C.
, and
Petzold
,
L.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
,”
Math. Comput.
,
174
, pp.
491
516
. 0025-5718
44.
Brenan
,
K.
, and
Engquist
,
B. E.
, 1988, “
Backward Differentiation Approximations of Nonlinear Differential/Algebraic Systems
,”
Math. Comput.
0025-5718,
51
(
184
), pp.
659
676
.
45.
Negrut
,
D.
,
Jay
,
L.
,
Khude
,
N.
, and
Heyn
,
T.
, 2007, “
A Discussion of Low-Order Integration Formulas for Rigid and Flexible Multibody Dynamics
,”
Proceedings of the Multibody Dynamics ECCOMAS Thematic Conference
.
46.
Schafer
,
N.
,
Negrut
,
D.
, and
Serban
,
R.
, 2008, “
Experiments to Compare Implicit and Explicit Methods of Integration in Molecular Dynamics Simulation
,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2008-01.
47.
Khude
,
N.
,
Jay
,
L. O.
, and
Negrut
,
D.
, 2008, “
A Comparison of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics
,” Simulation-Based Engineering Laboratory, The University of Wisconsin-Madison, Technical Report No. TR-2008-02.
48.
MSC.Software
, 2005, ADAMS User’s Manual, http://www.mscsoftware.comhttp://www.mscsoftware.com.
You do not currently have access to this content.