This paper addresses practical issues associated with the numerical enforcement of constraints in flexible multibody systems, which are characterized by index-3 differential algebraic equations (DAEs). The need to scale the equations of motion is emphasized; in the proposed approach, they are scaled based on simple physical arguments, and an augmented Lagrangian term is added to the formulation. Time discretization followed by a linearization of the resulting equations leads to a Jacobian matrix that is independent of the time step size, h; hence, the condition number of the Jacobian and error propagation are both O(h0): the numerical solution of index-3 DAEs behaves as in the case of regular ordinary differential equations (ODEs). Since the scaling factor depends on the physical properties of the system, the proposed scaling decreases the dependency of this Jacobian on physical properties, further improving the numerical conditioning of the resulting linearized equations. Because the scaling of the equations is performed before the time and space discretizations, its benefits are reaped for all time integration schemes. The augmented Lagrangian term is shown to be indispensable if the solution of the linearized system of equations is to be performed without pivoting, a requirement for the efficient solution of the sparse system of linear equations. Finally, a number of numerical examples demonstrate the efficiency of the proposed approach to scaling.

1.
Laulusa
,
A.
and
Bauchau
,
O.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011004
.
2.
Bauchau
,
O.
and
Laulusa
,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011005
.
3.
Orlandea
,
N.
,
Chace
,
M.
, and
Calahan
,
D.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part I
,”
ASME J. Eng. Ind.
,
99
(
3
), pp.
773
779
. 0022-0817
4.
Orlandea
,
N.
,
Calahan
,
D.
, and
Chace
,
M.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part II
,”
ASME J. Eng. Ind.
0022-0817,
99
(
3
), pp.
780
784
.
5.
Gear
,
C.
, 1984, “
Differential-Algebraic Equations
,”
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
323
334
.
6.
Gear
,
C.
, and
Petzold
,
L.
, 1984, “
ODE Methods for the Solution of Differential/Algebraic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
21
(
4
), pp.
716
728
.
7.
Petzold
,
L.
, and
Lötstedt
,
P.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints. II: Practical Implications
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
(
3
), pp.
720
733
.
8.
Borri
,
M.
,
Trainelli
,
L.
, and
Croce
,
A.
, 2006, “
The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
(
50–51
), pp.
6974
6992
.
9.
Hilber
,
H.
,
Hughes
,
T.
, and
Taylor
,
R.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
5
, pp.
283
292
.
10.
Chung
,
J.
, and
Hulbert
,
G.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The generalized-α Method
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
371
375
.
11.
Cardona
,
A.
, and
Géradin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
(
3
), pp.
801
820
.
12.
Cardona
,
A.
, 1989, “
An Integrated Approach to Mechanism Analysis
,” Ph.D. thesis, Université de Liège, Belgium.
13.
Newmark
,
N.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Engrg. Mech. Div.
,
85
, pp.
67
94
. 0044-7951
14.
Hughes
,
T.
, 1983, “
Analysis of Transient Algorithms With Particular Reference to Stability Behavior
,”
Computational Methods for Transient Analysis
,
T.
Belytschko
and
T.
Hughes
, eds.,
North-Holland
,
Amsterdam
, pp.
67
155
.
15.
Fox
,
R.
, 1971,
Optimization Methods for Engineering Design
,
Addison-Wesley
,
Reading, MA
.
16.
Reklaitis
,
G.
,
Ravindran
,
A.
, and
Ragsdell
,
K.
, 1983,
Engineering Optimization. Methods and Applications
,
Wiley
,
New York
.
17.
Vanderplaats
,
G.
, 1984,
Numerical Optimization Techniques for Engineering: With Applications
,
McGraw-Hill
,
New York
.
18.
Cardona
,
A.
, and
Géradin
,
M.
, 1994, “
Numerical Integration of Second Order Differential-Algebraic Systems in Flexible Mechanism Dynamics
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
(
NATO ASI Series
),
J.
Ambrosio
and
M. S.
Pereira
, eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
501
529
.
19.
Bottasso
,
C.
,
Bauchau
,
O.
, and
Cardona
,
A.
, 2007, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
29
(
1
), pp.
397
414
.
20.
Bottasso
,
C.
,
Dopico
,
D.
, and
Trainelli
,
L.
, 2008, “
On the Optimal Scaling of Index-Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
19
, pp.
3
20
. 1384-5640
21.
Lötstedt
,
P.
, and
Petzold
,
L.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
,”
Math. Comput.
,
46
(
174
), pp.
491
516
. 0025-5718
22.
Golub
,
G.
, and
Van Loan
,
C.
, 1989,
Matrix Computations
,
2nd ed.
,
Johns Hopkins University Press
,
Baltimore, MD
.
23.
Bayo
,
E.
,
García de Jalón
,
J.
, and
Serna
,
M.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
183
195
.
24.
Bayo
,
E.
,
García de Jalón
,
J.
,
Avello
,
A.
, and
Cuadrado
,
J.
, 1991, “
An Efficient Computational Method for Real Time Multibody Dynamic Simulation in Fully Cartesian Coordinates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
92
, pp.
377
395
.
25.
Bauchau
,
O.
,
Bottasso
,
C.
, and
Nikishkov
,
Y.
, 2001, “
Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures
,”
Math. Comput. Modell.
0895-7177,
33
(
10–11
), pp.
1113
1137
.
26.
Bathe
,
K.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
27.
Gill
,
P.
,
Murray
,
W.
,
Saunders
,
M.
, and
Wright
,
M.
, 1984, “
Sequential Quadratic Programming Methods For Nonlinear Programming
,”
Computer-Aided Analysis and Optimization of Mechanical System Dynamics
,
E.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
679
697
.
28.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
,
Berlin
.
29.
Gear
,
C.
, 1971, “
Simultaneous Numerical Solution of Differential-Algebraic Equations
,”
IEEE Trans. Circuit Theory
,
18
(
1
), pp.
89
95
. 0018-9324
30.
Bauchau
,
O.
, 1998, “
Computational Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
2
), pp.
169
225
.
You do not currently have access to this content.