In this paper, two triangular plate elements based on the absolute nodal coordinate formulation (ANCF) are introduced. Triangular elements employ the Kirchhoff plate theory and can, accordingly, be used in thin plate problems. As usual in ANCF, the introduced elements can exactly describe arbitrary rigid body motion when their mass matrices are constant. Previous plate developments in the absolute nodal coordinate formulation have focused on rectangular elements that are difficult to use when arbitrary meshes need to be described. The elements introduced in this study have overcome this problem and represent an important addition to the absolute nodal coordinate formulation. The two elements introduced are based on Specht’s and Morley’s shape functions, previously used in conventional finite element formulations. The numerical solutions of these elements are compared with previously proposed rectangular finite element and analytical results.

1.
Shabana
,
A. A.
, 1997, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
1
(
3
), pp.
339
348
.
2.
Escalona
,
J. L.
,
Hussien
,
H.
, and
Shabana
,
A. A.
, 1998, “
Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
0022-460X,
214
, pp.
833
851
.
3.
Shabana
,
A. A.
, 1998, “
Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
293
306
.
4.
Shabana
,
A. A.
, and
Mikkola
,
A. A.
, 2002, “
Modeling of Slope Discontinuities in Flexible Body Dynamics Using the Finite Element Method
,”
Proceedings of the DETC’02 ASME 2002 Design Engineering Technical Conference
,
Montreal, Canada
, Sept. 29–Oct. 2, Vol.
2
, Paper No. DETC2002/DAC-34094.
5.
Omar
,
M. A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation
,”
J. Sound Vib.
0022-460X,
243
(
3
), pp.
565
576
.
6.
Kerkkänen
,
K.
,
Garcia-Vallejo
,
D.
, and
Mikkola
,
A.
, 2006, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
0924-090X,
43
(
3
), pp.
239
256
.
7.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
53
74
.
8.
Garcia-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
, in press. 0924-090X
9.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2005, “
Analysis of Higher and Lower Order Elements for the Absolute Nodal Coordinate Formulation
,”
Proceedings of the 5th ASME International Conference on Multibody Systems, Nonlinear Dynamics, and Control
,
ASME
,
New York
, Paper No. DETC2005-84827.
10.
Dufva
,
K.
, and
Shabana
,
A. A.
, 2005, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
J. Multi-Body Dynamics
,
219
(
4
), pp.
345
355
.
11.
Morley
,
L. S. D.
, 1971, “
The Constant-Moment Plate-Bending Element
,”
J. Strain Anal.
0022-4758,
6
(
1
), pp.
20
24
.
12.
Specht
,
B.
, 1988, “
Modified Shape Functions for the Three Node Plate Bending Element Passing the Patch Test
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
705
715
.
13.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
(
1
), pp.
17
43
.
14.
Yoo
,
W.-S.
,
Dmitrochenko
,
O.
, and
Pogorelov
,
D.
, 2006, “
Verification of Absolute Nodal Coordinate Formulations in Flexible Multibody Dynamics via Physical Experiments of Large Deformation Problems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
81
93
.
15.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
(
Solid Mechanics
),
Butterworth
,
London
, Vol.
2
.
16.
Dunavant
,
D. A.
, 1985, “
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle
,”
Int. J. Numer. Methods Eng.
0029-5981,
21
, pp.
1129
1148
.
17.
Yoo
,
W.-S.
,
Dmitrochenko
,
O.
,
Park
,
S.-J.
, and
Lim
,
O.-K.
, 2005, “
A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip
,”
Mech. Based Des. Struct. Mach.
,
33
(
3–4
), pp.
399
422
. 0029-5981
18.
Gear
,
C. W.
,
Gupta
,
G. K.
, and
Leimkuhler
,
B.
, 1985, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12-13
, pp.
77
90
.
19.
W.
Schiehlen
, ed., 1990,
Multibody Systems Handbook
,
Springer
,
Berlin
.
20.
Pogorelov
,
D.
, 1997, “
Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems
,”
Proceedings of the IUTAM Symposium on Interaction Between Dynamics and Control in Advanced Mechanical Systems
,
D. H.
van Campen
, ed.,
Kluwer
,
Dordrecht
, pp.
313
320
.
21.
Pogorelov
,
D.
, 1998, “
Differential-Algebraic Equations in Multibody System Modeling
,”
Numerical Algorithms
,
Baltzer Science
, Vol.
19
, pp.
183
194
.
22.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
,
2nd ed.
,
Cambridge University Press
,
Cambridge
.
23.
Goldstein
,
H.
, 1950,
Classical Mechanics
,
2nd ed.
,
Addison-Wesley
,
Reading MA
.
24.
Bathe
,
K.-J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.