The competing solutions of a planar pendulum parametrically excited by the vertical motion of the pivot are investigated in terms of both attractor robustness and basin integrity. Two different measures are considered to highlight how the integrity of the system is modified by changing the amplitude of the excitation. Various attractors, both in-well and out-of-well, are considered, and the integrity profiles of each of them are determined. A detailed discussion of the interaction and mutual erosion of the various attractors is performed by clarifying the role of the two complementary measures, and the most relevant characteristics of the erosion profiles are interpreted in terms of the underlying topological mechanisms involving local or global bifurcations.

1.
Thompson
,
J. M. T.
, 1989, “
Chaotic Phenomena Triggering the Escape From a Potential Well
,”
Proc. R. Soc. London, Ser. A
1364-5021,
421
, pp.
195
225
.
2.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
, 1989, “
Integrity Measures Quantifying the Erosion of Smooth and Fractal Basins of Attraction
,”
J. Sound Vib.
,
135
, pp.
453
475
. 0022-460X
3.
Soliman
,
M. S.
, and
Thompson
,
J. M. T.
, 1992, “
Global Dynamics Underlying Sharp Basin Erosion in Nonlinear Driven Oscillators
,”
Phys. Rev. A
1050-2947,
45
, pp.
3425
3431
.
4.
Lansbury
,
A. N.
,
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 1992, “
Basin Erosion in the Twin-Well Duffing Oscillator: Two Distinct Bifurcation Scenarios
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
2
, pp.
505
532
.
5.
Gan
,
C.
,
Lu
,
Q.
, and
Huang
,
K.
, 1998, “
Nonstationary Effects on Safe Basins of a Forced Softening Duffing Oscillator
,”
Acta Mech. Sin.
,
11
, pp.
253
260
. 0567-7718
6.
de Freitas
,
M. S. T.
,
Viana
,
R. L.
, and
Grebogi
,
C.
, 2003, “
Erosion of the Safe Basin for the Transversal Oscillations of a Suspension Bridge
,”
Chaos, Solitons Fractals
0960-0779,
18
, pp.
829
841
.
7.
Wu
,
X.
,
Tao
,
L.
, and
Li
,
Y.
, 2004, “
The Safe Basin Erosion of a Ship in Waves With Single Degree of Freedom
,”
Proceedings. of the 15th Australasian Fluid Mechanics Conference
,
Sydney, Australia
, Dec. 13–17.
8.
Lenci
,
S.
, and
Rega
,
G.
, 2006, “
Control of Pull-in Dynamics in a Nonlinear Thermoelastic Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
390
401
.
9.
Goncalves
,
P. B.
,
Silva
,
F. M. A.
, and
Del Prado
,
Z. J. G. N.
, 2007, “
Global Stability Analysis of Parametrically Excited Cylindrical Shells Through the Evolution of Basin Boundaries
,”
Nonlinear Dyn.
,
50
, pp.
121
145
. 0924-090X
10.
Rega
,
G.
, and
Lenci
,
S.
, 2005, “
Identifying, Evaluating, and Controlling Dynamical Integrity Measures in Nonlinear Mechanical Oscillators
,”
Nonlinear Anal.: Real World Appl.
,
63
, pp.
902
914
. 0362-546X
11.
Xu
,
J.
,
Lu
,
Q.
, and
Huang
,
K.
, 1996, “
Controlling Erosion of Safe Basin in Nonlinear Parametrically Excited Systems
,”
Acta Mech. Sin.
,
12
, pp.
281
288
. 0567-7718
12.
Rega
,
G.
, and
Lenci
,
S.
, 2008, “
Dynamical Integrity and Control of Nonlinear Mechanical Oscillators
,”
J. Vib. Control
1077-5463,
14
, pp.
159
179
.
13.
Butikov
,
E.
, 1999, “
The Rigid Pendulum–An Antique But Evergreen Physical Model
,”
Eur. J. Phys.
0143-0807,
20
, pp.
429
441
.
14.
Blekhman
,
I. I.
, 2000,
Vibrational Mechanics
,
World Scientific
,
Singapore
.
15.
Szemplinska-Stupnicka
,
W.
,
Tyrkiel
,
E.
, and
Zubrzycki
,
A.
, 2000, “
The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
, pp.
2161
2175
.
16.
Xu
,
X.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Romeo
,
R.
, and
Lenci
,
S.
, 2007, “
Dynamic Interactions Between Parametric Pendulum and Electrodynamical Shaker
,”
Z. Angew. Math. Mech.
0044-2267,
87
, pp.
172
186
.
17.
Bishop
,
S. R.
, and
Clifford
,
M. J.
, 1996, “
Zones of Chaotic Behavior in the Parametrically Excited Pendulum
,”
J. Sound Vib.
0022-460X,
189
, pp.
142
147
.
18.
Koch
,
B. P.
, and
Leven
,
R. W.
, 1985, “
Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,”
Physica D
0167-2789,
16
, pp.
1
13
.
You do not currently have access to this content.