This paper introduces a new interpretation of the energetic coefficient of restitution, especially applicable to contact involving multibody systems. This interpretation generalizes the concept of the energetic coefficient of restitution and allows for consideration of simultaneous multiple-point contact scenarios. Such a generalization is obtained by an analysis of energy absorption and restitution during impact, using a decomposition technique, which exactly decouples the kinetic energy associated with the normal and tangential directions of the contact pairs. The main advantages of the new definition and its potential applications are highlighted.

1.
Johnson
,
K.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge
.
2.
Hu
,
B.
, and
Schiehlen
,
W.
, 2003, “
Multi-Time Scale Simulation for Impact Systems: From Wave Propagation to Rigid-Body Motion
,”
Arch. Appl. Mech.
,
72
(
11-12
), pp.
885
898
. 0939-1533
3.
Stewart
,
D. E.
, 2000, “
Rigid-Body Dynamics With Friction and Impact
,”
SIAM Rev.
0036-1445,
42
(
1
), pp.
3
39
.
4.
Wang
,
Y.
, and
Mason
,
M. T.
, 1992, “
Two Dimensional Rigid-Body Collisions With Friction
,”
ASME Trans. J. Appl. Mech.
0021-8936,
59
, pp.
635
642
.
5.
Glocker
,
C.
, 2006,
An Introduction to Impacts
(
Nonsmooth Mechanics of Solids, CISM Courses and Lectures
),
Springer-Verlag
,
New York
, Vol.
485
, pp.
45
102
.
6.
Aeberhard
,
U.
, and
Glocker
,
C.
, 2005, “
Energy Considerations for Excited Perfect Collisions
,”
Proceedings of the Fifth EUROMECH Nonlinear Oscillations Conference
,
Eindhoven
, pp.
422
431
.
7.
Glocker
,
C.
, 2001, “
On Frictionless Impact Models in Rigid-Body Systems
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
(
1789
), pp.
2385
2404
.
8.
Liu
,
T.
, and
Wang
,
W. M. Y.
, 2005, “
Computation of Three-Dimensional Rigid-Body Dynamics With Multiple Unilateral Contacts Using Time-Stepping and Gauss–Seidel Methods
,”
IEEE. Trans. Autom. Sci. Eng.
,
2
(
1
), pp.
19
31
. 1545-5955
9.
Johansson
,
L.
, 2001, “
A Newton Method for Rigid Body Frictional Impact With Multiple Simultaneous Impact Points
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
3–5
), pp.
239
254
. 0045-7825
10.
Trinkle
,
J. C.
,
Tzitzouris
,
J. A.
, and
Pang
,
J. S.
, 2001, “
Dynamic Multi-Rigid-Body Systems With Concurrent Distributed Contacts
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
(
1789
), pp.
2575
2593
.
11.
Wang
,
Y.-T.
, and
Kumar
,
V.
, 1994, “
Simulation of Mechanical Systems With Multiple Frictional Contacts
,”
ASME J. Mech. Des.
0161-8458,
116
(
2
), pp.
571
580
.
12.
Mason
,
M. T.
, and
Wang
,
Y.
, 1988, “
On the Inconsistency of Rigid-Body Frictional Planar Mechanics
,”
IEEE International Conference on Robotics and Automation
,
Philadelphia
, Vol.
1
, pp.
524
528
, Paper No. 88120172685.
13.
Fremond
,
M.
, 1995, “
Rigid Bodies Collisions
,”
Phys. Lett. A
0375-9601,
204
(
1
), pp.
33
41
.
14.
Payr
,
M.
,
Glocker
,
C.
, and
Bösch
,
C.
, 2005, “
Experimental Treatment of Multiple-Contact-Collisions
,”
Proceedings of the 5th EUROMECH Nonlinear Oscillations Conference
,
Eindhoven
, pp.
422
431
.
15.
Ceanga
,
V.
, and
Hurmuzlu
,
Y.
, 2001, “
A New Look to an Old Problem: Newtons Cradle
,”
ASME J. Appl. Mech.
0021-8936,
68
(
4
), pp.
575
583
.
16.
Pfeiffer
,
F.
, and
Glocker
,
C.
, 1996,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
17.
Pfeiffer
,
F.
, 1999, “
Unilateral Problems of Dynamics
,”
Arch. Appl. Mech.
0939-1533,
69
(
8
), pp.
503
527
.
18.
Gilardi
,
G.
, and
Sharf
,
I.
, 2002, “
Literature Survey of Contact Dynamics Modelling
,”
Mech. Mach. Theory
0094-114X,
37
(
10
), pp.
1213
1239
.
19.
Modarres Najafabadi
,
S. A.
,
Kövecses
,
J.
, and
Angeles
,
J.
, 2005, “
A Comparative Study of Approaches to Dynamics Modeling of Contact Transitions in Multibody Systems
,”
Proceedings of the 2005 ASME International Design Engineering Technical Conferences
,
Long Beach, CA
, Sept. 24–28, Vol.
6A
, pp.
505
514
, Paper No. DETC2005–85418.
20.
Glocker
,
C.
, and
Pfeiffer
,
F.
, 1995, “
Multiple Impacts With Friction in Rigid Multibody Systems
,”
Nonlinear Dyn.
0924-090X,
7
(
4
), pp.
471
497
.
21.
De Jalon
,
J. G.
, and
Bayo
,
E.
, 1993,
Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge
,
Springer-Verlag
,
New York
.
22.
Heinstein
,
M.
,
Mello
,
F.
,
Attaway
,
S.
, and
Laursen
,
T.
, 2000, “
Contact-Impact Modelling in Explicit Transient Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
187
, pp.
621
640
. 0045-7825
23.
Brach
,
R. M.
, 1984, “
Friction, Restitution, and Energy Loss in Planar Collisions
,”
ASME J. Appl. Mech.
0021-8936,
51
(
1
), pp.
164
170
.
24.
Brach
,
R. M.
, 1989, “
Rigid Body Collisions
,”
ASME J. Appl. Mech.
0021-8936,
56
(
1
), pp.
133
138
.
25.
Stronge
,
W.
, 1991, “
Unraveling Paradoxical Theories for Rigid Body Collisions
,”
ASME Trans. J. Appl. Mech.
0021-8936,
58
, pp.
1049
1055
.
26.
Stronge
,
W. J.
, 2000,
Impact Mechanics
,
Cambridge University Press
,
Cambridge
.
27.
Stronge
,
W. J.
, 2001, “
Generalized Impulse and Momentum Applied to Multibody Impact With Friction
,”
Mech. Struct. Mach.
0890-5452,
29
(
2
), pp.
239
260
.
28.
Glocker
,
C.
, 2004, “
Concepts for Modeling Impacts Without Friction
,”
Acta Mech.
,
168
(
1-2
), pp.
1
19
. 0001-5970
29.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics: Models, Dynamics and Control
,
2nd ed.
,
Springer
,
London
.
30.
Kövecses
,
J.
, and
Piedbœuf
,
J.-C.
, 2003, “
A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems
,”
Proceedings of the 2003 ASME Design Engineering Technical Conferences
,
Chicago
, Sept. 2–6, Vol.
5A
, pp.
143
152
, Paper No. Detc2003/Vib–48318.
31.
Blajer
,
W.
, 1997, “
A Geometric Unification of Constrained System Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
(
1
), pp.
3
21
.
32.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Parts I and II
,”
ASME J. Appl. Mech.
0021-8936, to be published.
33.
Glocker
,
C.
, 2001,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
(
Lecture Notes in Applied Mechanics
),
Springer-Verlag
,
Berlin
, Vol.
1
.
34.
Moreau
,
J. J.
, 1988,
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
(
Nonsmooth Mechanics and Applications, Courses and Lectures
) Vol.
302
, pp.
1
82
.
35.
Glocker
,
C.
, 2002, “
Impacts With Global Dissipation Index at Re-Entrant Corners
,”
Solid Mechanics and Its Applications
,
Contact Mechanics: Proceedings of the 3rd Contact Mechanics International Symposium
,
J.
Martins
and
M.
Monteiro Marques
, eds.,
Kluwer
,
Dordrecht
, Vol.
103
, pp.
45
52
.
36.
Glocker
,
C.
, 2001, “
A Geometric Interpretation of Newtonian Impacts With Global Dissipation Index
,”
Cahiers Stephanois de Mathematiques Appliquees Publication de l’Equipe d’Analyse Numérique
, p.
14
.
37.
Modarres Najafabadi
,
S. A.
,
Kövecses
,
J.
, and
Angeles
,
J.
, 2007, “
Energy Analysis and Decoupling in Three-Dimensional Impacts of Multibody Systems
,”
ASME J. Appl. Mech.
0021-8936,
74
(
5
), pp.
845
851
.
38.
Baruh
,
H.
, 1999,
Analytical Dynamics
,
McGraw-Hill
,
Boston, MA
.
39.
Kövecses
,
J.
, and
Cleghorn
,
W. L.
, 2003, “
Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain’s Principle: Discrete and Hybrid Parameter Models
,”
Int. J. Non-Linear Mech.
,
38
(
6
), pp.
935
956
. 0020-7462
40.
Greenwood
,
D. T.
, 2003,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge.
41.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
, 1996, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
0021-8936,
63
(
2
), pp.
307
316
.
42.
Stronge
,
W.
, 2003, “
Chain Reaction From Impact on Aggregate of Elasto-Plastic ‘Rigid’ Bodies
,”
Int. J. Impact Eng.
,
28
(
3
), pp.
291
302
. 0734-743X
43.
Acary
,
V.
, and
Brogliato
,
B.
, 2003, “
Concurrent Multiple Impacts Modelling: Case Study of a 3-Ball Chain
,”
Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics
,
Bathe
,
K.
ed.,
Elsevier
,
New York
, pp.
1
6
.
44.
Synge
,
J.
, and
Schild
,
A.
, 1978,
Tensor Calculus
,
Dover
,
New York
.
You do not currently have access to this content.