This paper proposes a new design approach for control of periodically time-varying systems. The approach is based on the point-mapping technique to obtain an equivalent linear time-invariant sampled-data system for the linear periodically time-varying system with a piecewise parametrization of the control vector. This allows the known control design techniques for sampled-data systems to be applied. The proposed approach is then extended for analysis of robustness of the control design with respect to plant parametric uncertainties. This is achieved by computation of approximate discrete-time dynamics of the perturbed system by truncated point-mappings. By computing an upper norm bound on the error due to the truncated approximations, the robustness analysis of the system with respect to the parametric uncertainties is then formulated as a discrete-time structured singular value problem. Two numerical examples are considered to illustrate the approach and the extension of the approach for robust stability analysis.

1.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Holden Day
,
San Francisco
.
2.
Arcara
,
P.
, and
Bittanti
,
S.
, 2000, “
Periodic Control of Helicopter Rotors for Attenuation of Vibrations in Forward Flight
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
6
), pp.
883
894
.
3.
Calico
,
R. A.
, and
Wiesel
,
W. E.
, 1986, “
Stabilization of Helicopter Blade Flapping
,”
J. Am. Helicopter Soc.
0002-8711,
31
, pp.
59
64
.
4.
Webb
,
S. G.
,
Calico
,
R. A.
, and
Wiesel
,
W. E.
, 1991, “
Time-Periodic Control of a Multiblade Helicopter
,” AIAA
J. Guid. Control Dyn.
0731-5090,
14
(
6
), pp.
1301
1308
.
5.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
, 2000,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
,
Cambridge
.
6.
Middleton
,
R. H.
,
Goodwin
,
G. C.
, and
Longman
,
R. W.
, 1989, “
A method for Improving the Dynamic Accuracy of a Robot Performing a Repetitive Task
,”
Int. J. Robot. Res.
0278-3649,
8
(
5
), pp.
67
74
.
7.
Hale
,
J. K.
, 1963,
Oscillations in Nonlinear Systems
,
McGraw-Hill
,
New York
.
8.
Urabe
,
M.
, 1967,
Nonlinear Autonomous Oscillations
,
Academic
,
New York
.
9.
Bogoliobov
,
N. N.
, and
Mitropolsky
,
Y. A.
, 1961,
Asymptotic Methods in the Theory of Nonlinear Oscillations
,
Hindustan
,
Delhi
.
10.
Thompson
,
J. M. T.
, and
Stewart
,
H. B.
, 1986,
Nonlinear Dynamics and Chaos
,
Wiley
,
Chichester
.
11.
Bernussou
,
J.
, 1977,
Point Mapping Stability
,
Pergamon
,
Oxford
.
12.
Flashner
,
H.
, 1979, “
A Point Mapping Study of Dynamical Systems
,” Ph.D. thesis, University of California, Berkeley.
13.
Flashner
,
H.
, and
Hsu
,
C. S.
, 1983, “
A Study of Nonlinear Periodic Systems Via the Point Mapping Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
19
, pp.
185
215
.
14.
Yakubovich
,
V. A.
, and
Starzhinski
,
V. M.
, 1975,
Linear Differential Equations with Periodic Coefficients
,
Wiley
,
New York
.
15.
Sinha
,
S. C.
, and
Wu
,
D. H.
, 1991, “
An Efficient Computational Scheme for the Analysis of Periodic Systems
,”
J. Sound Vib.
0022-460X,
151
, pp.
91
117
.
16.
Sinha
,
S. C.
, and
Butcher
,
E. A.
, 1997, “
Symbolic Computation of Fundamental Solution Matrices for Time-Periodic Dynamical Systems
,”
J. Sound Vib.
0022-460X,
206
(
1
), pp.
61
85
.
17.
Kwakernaak
,
H.
, and
Sivan
,
R.
, 1972,
Linear Optimal Control Systems
,
Wiley Interscience
,
New York
.
18.
Sinha
,
S. C.
, and
Joseph
,
P.
, 1994, “
Control of General Dynamic System With Periodically Varying Parameters via Liapunov–Floquet Transformation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
650
658
.
19.
Pandiyan
,
R.
, and
Sinha
,
S. C.
, 1999, “
Periodic Flap Control of a Helicopter Blade in Forward Flight
,”
J. Vib. Control
1077-5463,
5
, pp.
761
777
.
20.
Pandiyan
,
R.
, and
Sinha
,
S. C.
, 2001, “
Time Varying Controller Synthesis for Nonlinear Systems Subjected to Periodic Parametric Loadings
,”
J. Vib. Control
1077-5463,
7
, pp.
73
90
.
21.
Deshmukh
,
V. S.
, and
Sinha
,
S. C.
, 2004, “
Control of Dynamic Systems With Time-Periodic Coefficients Via the Lyapunov–Floquet Transformation and Backstepping Technique
,”
J. Vib. Control
1077-5463,
10
, pp.
1517
1533
.
22.
Barmish
,
B. R.
, 1994,
New Tools for Robustness of Liner Systems
,
Macmillan
,
New York
.
23.
Mansour
,
M.
,
Balemi
,
S.
, and
Truöl
,
W.
, 1992,
Robustness of Dynamic Systems with Parameter Uncertainties
,
Birkhäuser
,
Berlin
.
24.
Doyle
,
J. C.
, 1982, “
Analysis of Feedback Systems With Structured Uncertainty
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
129
, pp.
242
250
.
25.
Safonov
,
M. G.
, 1982, “
Stability Margins for Diagonally Perturbed Multivariable Feedback Systems
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
129
, pp.
251
256
.
26.
Horisberger
,
H. P.
, and
Belanger
,
P. R.
, 1976, “
Regulators for Linear Time Invariant Plants with Uncertain Parameters
,”
IEEE Trans. Autom. Control
0018-9286,
AC-21
, pp.
705
708
.
27.
Boyd
,
S.
, and
Yang
,
Q.
, 1989, “
Structured and Simultaneous Lyapunov Functions for System Stability Problems
,”
Int. J. Control
0020-7179,
49
, pp.
2215
2240
.
28.
Yakubovich
,
V. A.
, 1977, “
S Procedure in Nonlinear Control Theory
,” pp.
62
77
.
29.
Megretski
,
A.
, 1995, “
Frequency-Domain Criteria of Robust Stability for Slowly Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
1
), pp.
153
155
.
30.
Megretski
,
A.
, and
Rantzer
,
A.
, 1997, “
System Analysis via Integral Quadratic Constraints
,”
IEEE Trans. Autom. Control
0018-9286,
42
(
6
), pp.
819
830
.
31.
Kao
,
C.
,
Megretski
,
A.
,
Jönsson
, and
U. T.
, 2001, “
A Cutting Plane Algorithm for Robustness Analysis of Periodically Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
46
(
4
), pp.
579
592
.
32.
Jönsson
,
U. T.
,
Kao
,
C.
, and
Megretski
,
A.
, 2003, “
Analysis of Periodically Forced Uncertain Feedback Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
50
(
2
), pp.
244
258
.
33.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M. L.
, 1998,
Digital Control of Dynamic Systems
,
Addison-Wesley
,
Reading, MA
.
34.
de Boor
,
C.
, 2001,
A Practical Guide to Splines
,
Springer-Verlag
,
New York
.
35.
Narendra
,
K. S.
, and
Taylor
,
J. H.
, 1973,
Frequency Domain Criteria for Absolute Stability
,
Academic
,
New York
.
36.
Bellman
,
R. E.
, 1957,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
This content is only available via PDF.
You do not currently have access to this content.