The present study formulates a model for a coupled oscillation of the convective flow and the solid membrane vibration, which occurs in a 2D domain of a fluid cell. The convection flow is induced by the transient thermal field of the membrane at the bottom of the fluid. The heat conduction in the solid material also causes the membrane to vibrate. This flow motion deviates from the conventional Rayleigh–Benard problem in that a transient thermal field causes the convection flow instead of a constant temperature gradient. A numerical computation reveals the synchronized motion behaviors between the Lorenz-type oscillator for the convection flow and the Duffing oscillator for the membrane motion. The bifurcation conditions from the stability analysis of the model justify the steady-state attractor behaviors and the difference in behavior from the oscillators without coupling.

1.
Rayleigh
,
L.
, 1916, “
On Convection Currents in a Horizontal Layer of Fluid, When the Higher Temperature is in the Under Side
,”
Philos. Mag.
0031-8086,
32
, pp.
529
546
.
2.
Saltzman
,
B.
, 1962, “
Finite Amplitude Free Convection as an Initial Value Problem-I, I
,”
J. Atmos. Sci.
0022-4928,
19
, pp.
329
341
.
3.
Lorenz
,
E. N.
, 1963, “
Deterministic Non-Periodic Flow
,”
J. Atmos. Sci.
0022-4928,
20
, pp.
130
141
.
4.
He
,
X.
, 2006, “
Chaotic Behavior of a Symmetric Laminate With Transient Thermal Field
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
4
), pp.
429
438
.
5.
Basuli
,
S.
, 1968, “
Large Deflection of Plate Problems Subjected to Normal Pressure and Heating
,”
Indian J. Mech. Math.
,
6
, pp.
22
30
.
6.
Sparrow
,
C. T.
, 1982,
Lorenz Equations
,
Springer-Verlag
,
New York
.
7.
Curry
,
J. H.
, 1978, “
A Generalized Lorenz System
,”
Commun. Math. Phys.
0010-3616,
60
, pp.
193
204
.
8.
Foias
,
C. J.
,
Jolly
,
M. S.
,
Kukavica
,
I.
,
Titi
,
E. S.
, 2001, “
The Lorenz Equation as a Metaphor for the Navier-Stokes Equations
,”
Discrete Contin. Dyn. Syst.
1078-0947,
7
, pp.
403
430
.
9.
Curry
,
J. H.
, 1979, “
Chaotic Response to Periodic Modulation of Model of a Convecting Fluid
,”
Phys. Rev. Lett.
0031-9007,
43
(
14
), pp.
1013
1016
.
10.
Gollub
,
J. P.
, and
Benson
,
S. V.
, 1978, “
Chaotic Response to a Periodic Perturbation of a Convecting Fluid
,”
Phys. Rev. Lett.
0031-9007,
41
(
14
), pp.
948
951
.
11.
Ahlers
,
G.
, and
Lucke
,
M.
, 1985, “
Thermal Convection Under External Modulation of the Driving Force. I. The Lorenz Model
,”
Phys. Rev. A
1050-2947,
32
(
6
), pp.
3493
3518
.
12.
Oohouchi
,
Y.
, and
Hada
,
T.
, 1997, “
Chaotic Convection in a Simple System Modified by Differential Heating
,”
J. Phys. Soc. Jpn.
0031-9015,
66
(
2
), pp.
369
378
.
13.
He
,
X.
, 2007, “
Successive Bifurcations of the Conditions of a Lorenz Type Equation for the Fluid Convection due to the Transient Thermal Field
,”
Math. Probl. Eng.
1024-123X,
2007
, 81514 (24 pages).
14.
Ahlers
,
G.
,
Hohenberg
,
P. C.
, and
Lucke
,
M.
, 1985, “
Thermal Convection Under External Modulation of the Driving Force. I, The Lorenz Model
,”
Phys. Rev. A
1050-2947,
32
(
6
), pp.
3493
3518
.
15.
McLaughlin
,
J. B.
, 1976, “
Successive Bifurcations Leading to Stochastic Behaviors
,”
J. Stat. Phys.
0022-4715,
15
, pp.
307
326
.
16.
Mischaikow
,
K.
,
Mrozek
,
M.
, and
A.
,
Szymczak
, 2001, “
Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values
,”
J. Differ. Equations
0022-0396,
169
, pp.
17
56
.
17.
Ozoguz
,
S. E.
,
Elwakil
,
A. S.
,
Kennedy
,
M. P.
, 2002, “
Experimental Verification of the Butterfly Attractor in a Modified Lorenz System
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
, pp.
1627
1632
.
18.
Ueda
,
Y.
,
Yoshida
,
S.
,
Stewart
,
H. B.
, and
Thompsons
,
J. M. T.
, 1990, “
Basin Explosions and Escape Phenomena in the Twin-Well Duffing Oscillators: Compound Global Bifurcation Organizing Behavior
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
332
, pp.
169
186
.
19.
Wirkus
,
S.
, and
Rand
,
R.
, 2002, “
The Dynamics of Two Coupled van der Pol Oscillators With Delay Coupling
,”
Nonlinear Dyn.
0924-090X,
30
, pp.
205
221
.
20.
Okamoto
,
T.
,
Nishio
,
Y.
, and
Ushida
,
A.
, 1997, “
Analysis of a Coupled Chaotic System Containing Circuits With Different Oscillation Frequencies
,”
IEICE Trans. Fundamentals
0916-8508,
E80A
(
7
), pp.
1324
1329
.
21.
Yin
,
H. W.
,
Dai
,
J. H.
, and
Zhang
,
H. J.
, 1998,
Phys. Rev. E
1063-651X,
58
(
5
), pp.
5683
5688
.
22.
Diaz-Guilera
,
A.
,
Arenas
,
A.
,
Corral
,
A.
, and
Perez
,
C. J.
, 1997, “
Stability of Spatio-Temporal Structures in a Lattice Model of Pulse-Coupled Oscillators
,”
Physica D
0167-2789,
103
(
1–4
), pp.
419
429
.
23.
Storti
,
D. W.
, and
Rand
,
R. H.
, 1982,
Int. J. Non-Linear Mech.
0020-7462,
17
(
3
), pp.
143
152
.
24.
Rand
,
R. H.
, and
Holmes
,
P. J.
, 1980, “
Bifurcation of Periodic Motion in Two Weakly Coupled van der Pol Oscillators
,”
Int. J. Non-Linear Mech.
0020-7462,
15
, pp.
387
399
.
25.
Stefanski
,
A.
, and
Kapitaniak
,
T.
, 2003, “
Synchronization of Two Chaotic Oscillators via a Negative Feedback Mechanism
,”
Int. J. Solids Struct.
0020-7683,
40
(
19
), pp.
5175
5185
.
26.
Pecora
,
L. M.
, and
Carroll
,
T. L.
, 1991, “
Driving Systems With Chaotic Signals
,”
Phys. Rev. A
1050-2947,
44
, pp.
2374
2383
.
27.
Ding
,
M.
, and
Ott
,
E.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
(
11
), pp.
1196
1199
.
28.
Shahverdiev
,
E. M.
, 1998, “
A Generalized Method of Chaos Synchronization in Some Dynamical Systems
,”
J. Phys. Soc. Jpn.
0031-9015,
67
(
6
), pp.
1912
1917
.
29.
Yang
,
J.
, and
Zhang
,
M.
, 2005, “
The Instability of Chaotic Synchronization in Coupled Lorenz Systems: From the Hopf to the Co-Dimension Two Bifurcation
,”
Eur. Phys. J. B
1434-6028,
47
(
2
), pp.
251
254
.
You do not currently have access to this content.