This paper presents a methodology for trajectory planning and tracking control of a tractor with a steerable trailer based on the system’s dynamic model. The theory of differential flatness is used as the basic approach in these developments. Flat outputs are found that linearize the system’s dynamic model using dynamic feedback linearization, a subclass of differential flatness. It is demonstrated that this property considerably simplifies motion planning and the development of controller. Simulation results are presented in the paper, which show that the developed controller has the desirable performance with exponential stability.

1.
1998,
Robot Motion Planning and Control
(
Lecture Notes in Control and Information Sciences
),
1st ed.
,
J.
Laumond
, ed.,
Springer
,
New York
, Chap. 4.
2.
Oriolo
,
G.
,
De Luca
,
A.
, and
Vendittelli
,
M.
, 2002, “
WMR Control via Dynamic Feedback Linearization: Design, Implementation, and Experimental Validation
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
6
), pp.
835
852
.
3.
Dixon
,
W.
,
Dawson
,
D.
,
Zergeroglu
,
E.
, and
Zhang
,
F.
, 2000, “
Robust Tracking and Regulation Control for Mobile Robots
,”
Int. J. Robust Nonlinear Control
1049-8923,
10
(
4
), pp.
199
216
.
4.
Samson
,
C.
, and
Ait-Abderrahim
,
K.
, 1991, “
Feedback Control of a Nonholonomic Wheeled Cart in Cartesian Space
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1136
1141
.
5.
d’Andrea Novel
,
B.
,
Bastin
,
G.
, and
Campion
,
G.
, 1991, “
Modelling and Control of Non Holonomic Wheeled Mobile Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1130
1135
.
6.
Samson
,
C.
, 1993, “
Time-Varying Feedback Stabilization of Car-Like Wheeled Mobile Robots
,”
Int. J. Robot. Res.
0278-3649,
12
(
1
), pp.
55
64
.
7.
d’Andrea Novel
,
B.
,
Campion
,
G.
, and
Bastin
,
G.
, 1995, “
Control of Nonholonomic Wheeled Mobile Robots by State Feedback Linearization
,”
Int. J. Robot. Res.
0278-3649,
14
(
6
), pp.
543
559
.
8.
Campion
,
G.
,
Bastin
,
G.
, and
d’Andrea Novel
,
B.
, 1996, “
Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
(
1
), pp.
47
61
.
9.
Fierro
,
R.
, and
Lewis
,
F. L.
, 1997, “
Control of Nonholonomic Mobile Robot: Backstepping Kinematics Into Dynamics
,”
J. Rob. Syst.
0741-2223,
14
(
3
), pp.
149
163
.
10.
Kim
,
B.
, and
Tsiotras
,
P.
, 2002, “
Controllers for Unicycle-Type Wheeled Robots: Theoretical Results and Experimental Validation
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
294
307
.
11.
Wang
,
D.
, and
Xu
,
G.
, 2003, “
Full-State Tracking and Internal Dynamics of Nonholonomic Wheeled Mobile Robots
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
203
214
.
12.
Pathak
,
K.
, and
Agrawal
,
S.
, 2005, “
An Integrated Path-Planning and Control Approach for Nonholonomic Unicycles Using Switched Local Potentials
,”
IEEE Trans. Rob. Autom.
1042-296X,
21
(
6
), pp.
1201
1208
.
13.
Murray
,
R.
, and
Sastry
,
S.
, 1991, “
Steering Nonholonomic Systems in Chained Form
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
1121
1126
.
14.
Rouchon
,
P.
,
Fliess
,
M.
,
Levine
,
J.
, and
Martin
,
P.
, 1993, “
Flatness and Motion Planning: The Car With n Trailers
,”
Proceedings of the European Control Conference
, pp.
1518
1522
.
15.
Jiang
,
B.
,
Liu
,
X.
,
Qi
,
X.
, and
Zhang
,
S.
, 1994, “
Nonlinear Feedback and Robust Tracking Control of Articulated Vehicles
,”
Proceedings of the IEEE Conference on Control Applications
, pp.
373
378
.
16.
DeSantis
,
R.
, 1994, “
Path-Tracking for a Tractor-Trailer-Like Robot
,”
Int. J. Robot. Res.
0278-3649,
13
(
6
), pp.
533
543
.
17.
Bushnell
,
L.
,
Tilbury
,
D.
, and
Sastry
,
S.
, 1995, “
Steering Three-Input Nonholonomic Systems: The Fire Truck Example
,”
Int. J. Robot. Res.
0278-3649,
14
(
4
), pp.
366
381
.
18.
Lamiraux
,
F.
, and
Laumond
,
J.
, 1998, “
A Practical Approach to Feedback Control for a Mobile Robot With Trailer
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3291
3296
.
19.
Hao
,
Y.
, and
Agrawal
,
S.
, 2005, “
Formation Planning and Control of UGVs With Trailers
,”
Auton. Rob.
0929-5593,
19
(
3
), pp.
257
270
.
20.
Orosco-Guerrero
,
R.
,
Aranda-Bricaire
,
E.
, and
Velasco-Villa
,
M.
, 2002, “
Modeling and Dynamic Feedback Linearization of a Multi-Steered n-Trailer
,”
Proceedings of the 2002 IFAC, 15th Triennial Congress
,
Barcelona, Spain
.
21.
Fliess
,
M.
,
Levine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
, 1995, “
Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples
,”
Int. J. Control
0020-7179,
61
(
6
), pp.
1327
1361
.
22.
Sira-Ramirez
,
H.
, and
Agrawal
,
S. K.
, 2004,
Differential Flat Systems
,
1st ed.
,
Dekker
,
New York
.
23.
Ryu
,
J.-C.
,
Agrawal
,
S. K.
, and
Franch
,
J.
, 2007, “
Motion Planning and Control of a Tractor With a Steerable Trailer Using Differential Flatness
,”
Proceedings of the International Design Engineering Technical Conference (IDETC)
, Paper No. DETC2007-35288.
You do not currently have access to this content.