The usefulness of the Lempel-Ziv complexity and the Lyapanov exponent as two metrics to characterize the dynamic patterns is studied. System output signal is mapped to a binary string and the complexity measure of the time-sequence is computed. Along with the complexity we use the Lyapunov exponent to evaluate the order and disorder in the nonlinear systems. Results from the Lempel-Ziv complexity are compared with the results from the Lyapunov exponent computation. Using these two metrics, we can distinguish the noise from chaos and order. In addition, using same metrics we study the complexity measure of the Fibonacci map as a quasiperiodic system. Our analytical and numerical results prove that for a system like Fibonacci map, complexity grows logarithmically with the evolutionary length of the data block. We conclude that the normalized Lempel-Ziv complexity measure can be used as a system classifier. This quantity turns out to be 1 for random sequences and non-zero value less than 1 for chaotic sequences. While for periodic and quasiperiodic responses as data string grows, their normalized complexity approaches zero. However, higher deceasing rate is observed for periodic responses.

1.
Hazarika
,
N.
,
Tsoi
,
A. C.
, and
Sergejew
,
A. A.
, 1997, “
Nonlinear Considerations in EEG Signal Classification
,”
IEEE Trans. Signal Process.
1053-587X,
45
, pp.
829
836
.
2.
Jaeseung
,
J.
,
Jeong-Ho
,
C.
,
Kim
,
S. Y.
, and
Seol-Heui
,
H.
, 2001, “
Nonlinear Dynamical Analysis of the EEG in Patients With Alzheimer’s Disease and Vacular Dementia
,”
Clin. Neurophysiol.
1388-2457,
18
(
1
), pp.
58
67
.
3.
Watanabe
,
T. A.
,
Cellucc
,
C. J.
,
Kohegyi
,
E.
,
Bashore
,
T. R.
,
R. C.
Josiassen
,
Greenbaun
,
N. N.
, and
Rapp
,
P. E.
, 2003, “
The Algorithmic Complexity of Multichannel EEGs is Sensitive to Changes in Behavior
,”
Psychophysiology
0048-5772,
40
(
1
), pp.
77
97
.
4.
Yaylali
,
I.
,
Kocak
,
H.
, and
Jayakar
,
P.
, 1996, “
Detection of Seizures From Small Samples Using Nonlinear Dynamic System Theory
,”
IEEE Trans. Biomed. Eng.
0018-9294,
43
, pp.
743
751
.
5.
Lempel
,
A.
, and
Ziv
,
J.
, 1976, “
On the Complexity of Individual Sequences
,”
IEEE Trans. Inf. Theory
0018-9448,
IT-22
, pp.
75
78
.
6.
Lempel
,
A.
, and
Ziv
,
J.
, 1978, “
Compression of Individual Sequences Via Variable-Rate Coding
,”
IEEE Trans. Inf. Theory
0018-9448,
IT-24
(
5
), pp.
530
536
.
7.
Torres
,
M. E.
, and
Gamero
,
L. G.
, 2000, “
Relative Complexity Changes in Time Series Using Information Measures
,”
Physica A
0378-4371,
286
(
3–4
), pp.
457
473
.
8.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
, 1985, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
0167-2789,
16
, pp.
285
317
.
9.
Kinsner
,
W.
, 2006, “
Characterizing Chaos Through Lyapunov Metrics
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
36
(
2
), pp.
141
151
.
10.
Zhang
,
X. S.
, and
Roy
,
R. J.
, 2001, “
EEG Complexity as a Measure of Depth of Anesthesia for Patients
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
, pp.
1424
1433
.
11.
Yan
,
R.
, and
Gao
,
R. X.
, 2004, “
Complexity as a Measure for Machine Health Evaluation
,”
IEEE Trans. Instrum. Meas.
0018-9456,
53
, pp.
1327
1334
.
12.
Allison
,
L.
,
Edgoose
,
T.
, and
Dix
,
T. I.
, 1998, “
Compression of Strings With Approximate Repeats
,”
Intelligent Systems in Molecular Biology (ISMB98)
,
Montreal
, Jun. 28–Jul. 1, pp.
8
16
.
13.
Kasper
,
F.
, and
Shuster
,
H. G.
, 1987, “
Easily Calculable Measure for the Complexity of Spatiotemporal Patterns
,”
Phys. Rev. A
1050-2947,
36
, pp.
842
848
.
14.
Arasteh
,
D.
, 2006, “
Algorithmic Complexity Measure of the Dynamical Systems
,”
Intelligent Engineering Systems Through Artificial Neural Networks
,
ASME
,
New York
, Vol.
16
, pp.
161
167
.
15.
Whan
,
C. B.
, and
Lobb
,
C. J.
, 1995, “
Complex Dynamical Behavior in RLC-Shunted Josephson Junctions
,”
IEEE Trans. Appl. Supercond.
1051-8223,
5
(
2
), pp.
3094
3097
.
16.
Humierres
,
D. D’.
,
Beasley
,
M. R.
, and
Libchaber
,
B. A.
, 1982, “
Chaotic States and Routes to Chaos in the Forced Pendulum
,”
Phys. Rev. A
1050-2947,
26
(
6
), p.
3483
3496
.
17.
Huberman
,
B. A.
,
Crutchfield
,
J. P.
, and
Packard
,
N. H.
, 1980, “
Noise Phenomena in Josephson Junction
,”
Appl. Phys. Lett.
0003-6951,
37
, pp.
750
752
.
You do not currently have access to this content.