This paper presents a new practical tuning method for fractional order proportional and integral (FO-PI) controller. The plant to be controlled is mainly first order plus delay time (FOPDT). The tuning is optimum in the sense that the load disturbance rejection is optimized yet with a constraint on the maximum or peak sensitivity. We generalized Ms constrained integral (MIGO) based controller tuning method to handle the FO-PI case, called F-MIGO, given the fractional order α. The F-MIGO method is then used to develop tuning rules for the FOPDT class of dynamic systems. The final developed tuning rules only apply the relative dead time τ of the FOPDT model to determine the best fractional order α and at the same time to determine the best FO-PI gains. Extensive simulation results are included to illustrate the simple yet practical nature of the developed new tuning rules. The tuning rule development procedure for FO-PI is not only valid for FOPDT but also applicable for other general class of plants.

1.
Zeigler
,
J. G.
, and
Nichols
,
N. B.
, 1942, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
0097-6822,
64
, pp.
759
768
.
2.
Koivo
,
H.
, and
Tanttu
,
J.
, 1991, “
Tuning of PID Controllers: Survey of SISO and MIMO Techniques
,”
Proceedings of the IFAC Intelligent Tuning and Adaptive Control symposium
, Singapore, pp.
75
80
.
3.
Yamamoto
,
S.
, and
Hasimoto
,
I.
, 1991, “
Present Status and Future Needs: The View From Japanese Industry
,”
Proceedings of the Fourth International Conference on Chemical Process Control
,
I.
Arkun
and
I.
Ray
, eds.
4.
Magin
,
R. L.
, 2004, “
Fractional Calculus in Bioengineering
,”
Crit. Rev. Biomed. Eng.
0278-940X,
32
(
1–4
), pp.
1
390
.
5.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego
.
6.
Debnath
,
L.
, 2004, “
A Brief Historical Introduction to Fractional Calculus
,”
Int. J. Math. Educ. Sci. Technol.
,
35
(
4
), pp.
487
501
.
7.
Vinagre
,
B. M.
, and
Chen
,
Y.
, 2002, “
Lecture Notes on Fractional Calculus Applications in Automatic Control and Robotics
,”
The 41st IEEE CDC2002 Tutorial Workshop No. 2
,
B. M.
Vinagre
and
Y.
Chen
, eds., pp.
1
310
;
8.
Chen
,
Y.
, 2006, “
Ubiquitous Fractional Order Controls?
,”
Proceedings of The Second IFAC Symposium on Fractional Derivatives and Applications (IFAC FDA06, Plenary Paper.)
, July 19–21, pp.
1
12
.
9.
Xue
,
D.
,
Zhao
,
C. N.
, and
Chen
,
Y. Q.
, 2006, “
Fractional Order PID Control of a dc-Motor With an Elastic Shaft: A Case Study
,”
Proceedings of American Control Conference
, pp.
3182
3187
.
10.
Xue
,
D.
, and
Chen
,
Y.
, 2002, “
A Comparative Introduction of Four Fractional Order Controllers
,”
Proceedings of the Fourth IEEE World Congress on Intelligent Control and Automation (WCICA02)
,
IEEE
, pp.
3228
3235
.
11.
Manabe
,
S.
, 1960, “
The Non-Integer Integral and Its Application to Control Systems
,”
Japanese Institute of Electrical Engineers Journal
,
80
(
860
), pp.
589
597
.
12.
Manabe
,
S.
, 1961, “
The Non-Integer Integral and Its Application to Control systems
,” English Translation
Journal of Japan
,
6
, pp.
83
87
.
13.
Oustaloup
,
A.
, 1981, “
Linear Feedback Control Systems of Fractional Order Between 1 And 2
,”
Proceedings of the IEEE Symposium on Circuit and Systems
.
14.
Axtell
,
M.
, and
Bise
,
E. M.
, 1990, “
Fractional Calculus Applications in Control Systems
,”
Proceedings of the IEEE 1990 National Aerospace and Electronics Conference
, pp.
563
566
.
15.
Tenreiro Machado
,
J. A. T.
(Guest Editor), 2002, “
Special Issue on Fractional Calculus and Applications
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
1
385
.
16.
Ortigueira
,
M. D.
and
Tenreiro Machado
,
J. A. T.
(Guest Editors), 2003, “
Special Issue on Fractional Signal Processing and Applications
,”
Signal Process.
0165-1684,
83
(
11
), pp.
2285
2480
.
17.
Machado
,
J. A. T.
, 1997, “
Analysis and Design of Fractional-Order Digital Control Systems
,”
Journal Systems Analysis-Modelling-Simulation
,
27
, pp.
107
122
.
18.
Monje
,
C. A. M.
, 2006, “
Design Methods of Fractional Order Controllers for Industrial Applications
,” Ph.D. thesis, University of Extremadura, Spain.
19.
Monje
,
C. A. M.
, 2005, “
Auto-Tuning of Fractional PID Controllers
,”
IEEE Control System Society San Diego Chapter Meeting
, In Trex Enterprises;
20.
Zhao
,
C.
, 2006, “
Research on Analyse and Design Methods of Fractional Order System
,” Ph.D. thesis, Northeastern University, China.
21.
Barbosa
,
R. S.
,
Machado
,
J. A. T.
, and
Ferreira
,
I. M.
, 2004, “
Controller Tuning Based on Bode’S Ideal Transfer Function
,”
Nonlinear Dyn.
0924-090X,
38
, pp.
305
321
.
22.
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
, 2004, “
A New Tuning Strategy for a Non Integer Order PID Controller
,”
Proceedings of First IFAC Workshop on Fractional Differentiation and its Applications
.
23.
Valério
,
D.
, and
da Costa
,
J. S.
, 2006, “
Tuning-Rules for Fractional PID Controllers
,”
Proceedings of the Second IFAC Symposium on Fractional Differentiation and Its Applications (FDA06)
,
IFAC
.
24.
Åström
,
K.
,
Panagopoulos
,
H.
, and
Hägglund
,
T.
, 1998, “
Design of PI Controllers Based on Non-Convex Optimization
,”
Automatica
0005-1098,
34
(
5
), pp.
585
601
.
25.
Åström
,
K.
,
Panagopoulos
,
H.
, and
Hägglund
,
T.
, 2002, “
Design of PID Controllers Based on Constrained Optimization
,”
IEE Proc.: Control Theory Appl.
1350-2379,
149
(
1
), pp.
32
40
.
26.
Åström
,
K.
, and
Hägglund
,
T.
, 1995,
PID Controller: Theory, Design and Tuning
,
Instrument Society of America
,
Research Triangle Park, NC
.
27.
Åström
,
K.
, and
Hägglund
,
T.
, 1988,
Automatic Tuning of PID Controllers
,
Instrumentation Society of America
,
Research Triangle Park, NC
.
28.
Oldham
,
K.
, and
Spanier
,
J.
, 1974,
The Fractional Calculus
,
Academic
,
New York
.
29.
Chen
,
Y.
, and
Moore
,
K. L.
, 2002, “
Analytical Stability Bound for a Class of Delayed Fractional-Order Dynamic Systems
,”
Nonlinear Dyn.
0924-090X,
29
(
1–4
), pp.
191
200
.
30.
Åström
,
K.
, and
Hägglund
,
T.
, 2002, “
Revisiting the Ziegler-Nichols Tuning Rules for PI Control
,”
Asian Journal of Control
,
4
(
4
), pp.
364
380
.
31.
Oustaloup
,
A.
,
Levron
,
F.
,
Nanot
,
F.
, and
Mathieu
,
B.
, 2000, “
Frequency Band Complex Non Integer Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
47
(
1
), pp.
25
40
.
32.
Bhaskaran
,
T.
,
Chen
,
Y.
, and
Xue
,
D.
, 2007, “
Practical Tuning of Fractional Order Proportional and Integral Controller (i): Tuning Rule Development
,”
Proceedings of 2007 ASME DETC, The Third International Symposium on Fractional Derivatives and Their Applications
, Paper No. DETC2007-34302.
33.
Bhaskaran
,
T.
,
Chen
,
Y.
, and
Bohannan
,
G.
, 2007, “
Practical Tuning of Fractional Order Proportional and Integral Controller (ii): Experiments
,”
Proceedings of 2007 ASME DETC, The Third International Symposium on Fractional Derivatives and Their Applications
, Paper No. DETC2007-34910.
You do not currently have access to this content.