For practical applications, the fractional-order integral and differential operators require to be approximated as stable, causal, minimum-phase integer-order systems, which usually leads, in both continuous and discrete domains, to high order transfer functions. Assuming that an approximation of good quality is available for the fractional operator, efficient implementations, in both cost and speed, are required. The fast development of the microelectronics gives us the opportunity of using cheap, accurate, programmable, and fast devices for implementing reconfigurable analog and digital circuits. Among these devices, field programmable gate arrays, switched capacitor circuits, and field programmable analog arrays are used in this paper for the implementation of a fractional-order integrator, previously approximated by recursive Oustaloup’s method. The fundamentals of the devices as well as the design procedures are given, and the implementations are compared considering their simulated frequency responses, the design efforts, and other important issues.

1.
Jiang
,
C. X.
,
Hartley
,
T. T.
, and
Carletta
,
J. E.
, 2005, “
High Performance Low Cost Implementation of FPGA-Based Fractional-Order Operators
,”
Proceedings of IDETC∕CIE 2005
,
Long Beach, CA
.
2.
Jiang
,
C. X.
,
Carletta
,
J. E.
, and
Hartley
,
T. T.
, 2006, “
Hardware Implementation of Fractional-Order Systems as High Order IIR Filters
,”
Proceedings of Second IFAC Workshop on Fractional Derivatives and Its Applications
,
Porto, Portugal
.
3.
Caponetto
,
R.
, and
Porto
,
D.
, 2006, “
Analog Implementation of Non Integer Order Integrator via Field Programmable Analog Array
,”
Proceedings of Second IFAC Workshop on Fractional Derivatives and Its Applications
,
Porto, Portugal
.
4.
Oustaloup
,
A.
, 1995,
La Derivation Non Entière
,
Hermes
,
Paris
.
5.
Allen
,
P.
, and
Holberg
,
D.
, 2002,
CMOS Analog Circuit Design
,
2nd ed.
,
Oxford University Press
,
Oxford
.
6.
Caicedo Grueso
,
R.
, and
Velasco Medina
,
J.
, 2003, “
Diseño de Circuitos Análogos Usando FPAAs
,”
IX Workshop IBERCHIP
,
La Habana, Cuba
.
7.
ANADIGM, 2003, “
AN221E04 Datasheet. Dynamically Reconfigurable FPAA With Enhanced I∕O
.”
8.
López Vallejo
,
M. L.
, and
Ayala Rodrigo
,
J. L.
, 2004,
FPGA: Nociones Básicas e Implementación
,
Servicio de Publicaciones de la E.T.S.I. Telecomunicación de la Universidad Politécnica de Madrid
,
Madrid
.
9.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego
.
10.
Vinagre
,
B. M.
,
Podlubny
,
I.
,
Hernandez
,
A.
, and
Feliu
,
V.
, 2000, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications
,”
Fractional Calculus Appl. Anal.
1311-0454,
3
(
3
), pp.
231
248
.
11.
Oustaloup
,
A.
,
Levron
,
F.
,
Nanot
,
F.
, and
Mathieu
,
B.
, 2000, “
Frequency Band Complex Non Integer Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
47
(
1
), pp.
25
40
.
12.
Podlubny
,
I.
,
Petrás
,
I.
,
Vinagre
,
B. M.
,
O’Leary
,
P.
, and
Dorcák
,
L.
, 2002, “
Analogue Realizations of Fractional-Order Controllers
,”
Nonlinear Dyn.
0924-090X,
29
(
1–4
), pp.
281
296
.
13.
Valério
,
D.
, 2005, “
Fractional Robust Systems Control
,” Ph.D. thesis, Technical University of Lisbon, Lisbon.
15.
Suyama
,
K.
, and
Fang
,
S. C.
, 1992,
Users Manual for Switcap2 Version 1.1
,
Columbia University
,
New York
.
16.
Fleischer
,
P. E.
, and
Laker
,
K. R.
, 1979, “
A Family of Active Switched-Capacitor Biquad Building Blocks
,”
Bell Syst. Tech. J.
0005-8580,
58
, pp.
2235
2269
.
You do not currently have access to this content.