Stability of the response of an articulated loading platform under regular wave, modeled as a SDOF nonlinear oscillator, is investigated. Relative velocity square drag force for harmonic wave appearing in the right hand side of the equation of motion is mathematically treated to bring the velocity dependent nonlinear hydrodynamic damping term to the left hand side of the equation of motion. Use of these two techniques makes the equation of motion amenable to the application of method IHBC. In order to trace different branches of the response curve and investigate different instability phenomena that may exist, the commonly used incremental harmonic balance method (IHB) is modified and integrated with an arc-length continuation technique to develop into incremental harmonic balance continuation (IHBC) method. Further, a technique for treating the nonlinear hydrodynamic damping term using a concept of distribution theory has been developed. The stability of the solution is investigated by the Floquet theory using Hsu’s scheme. The stable solutions obtained by the IHBC method are compared with those obtained by the numerical integration of equation of motion wherever applicable.

1.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
T.-h.
, 1977, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
, pp.
1117
1136
.
2.
Chua
,
L. O.
, and
Ushida
,
A.
, 1981, “
Algorithms for Computing Almost Periodic Steady-State Response of Nonlinear Systems to Multiple Input Frequencies
,”
IEEE Circuits Syst. Mag.
1531-636X,
CAS-28
, pp.
953
971
.
3.
Burton
,
T. D.
, 1982, “
Nonlinear Oscillator Limit Cycle Analysis Using a Finite Transformation Approach
,”
Int. J. Non-Linear Mech.
0020-7462,
17
, pp.
7
19
.
4.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
, 1995,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
,
New York
.
5.
Sinha
,
S. C.
,
Bibb
,
J. S.
, and
Pandiyan
,
R.
, 1996, “
Liapunov–Floquet Transformation: Computation and Applications to Periodic Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
118
, pp.
209
219
.
6.
David
,
A.
, and
Sinha
,
S. C.
, 2000, “
Versal Deformation and Local Bifurcation Analysis of Time-Periodic Nonlinear Systems
,”
Nonlinear Dyn.
0924-090X,
21
, pp.
317
336
.
7.
Bishop
,
S. R.
, and
Virgin
,
L. N.
, 1988, “
The Onset of Chaotic Motions of a Moored Semi-Submersible
,”
ASME J. Offshore Mech. Arct. Eng.
0892-7219,
110
, pp.
205
209
.
8.
Gottlieb
,
O.
, and
Yim
,
S. C. S.
, 1992, “
Nonlinear Oscillations, Bifurcations and Chaos in a Multi-Point Mooring System With a Geometric Nonlinearity
,”
Appl. Ocean. Res.
0141-1187,
14
, pp.
241
257
.
9.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
, 1982, “
A Variable Parameter Incrementation Method for Dynamic Instability of Linear and Nonlinear Elastic Systems
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
849
853
.
10.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
, 1985, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
958
964
.
11.
Lau
,
S. L.
, and
Yuen
,
S. W.
, 1993, “
Solution Diagram of Nonlinear Dynamic Systems by the IHB Method
,”
J. Sound Vib.
0022-460X,
167
(
2
), pp.
303
316
.
12.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
, 1995, “
Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
0022-460X,
181
(
4
), pp.
619
633
.
13.
Raghothama
,
A.
, and
Narayanan
,
S.
, 2000, “
Bifurcations and Chaos of an Articulated Loading Platform With Piecewise Nonlinear Stiffness Using the Incremental Harmonic Balance Method
,”
Ocean Eng.
0029-8018,
27
, pp.
1087
1107
.
14.
Xu
,
L.
,
Lu
,
M. W.
, and
Cao
,
Q.
, 2002, “
Nonlinear Vibrations of Dynamical Systems With a General Form of Piecewise-Linear Viscous Damping by Incremental Harmonic Balance Method
,”
Phys. Lett. A
0375-9601,
301
, pp.
65
73
.
15.
Thompson
,
J. M. T.
,
Bokian
,
A. R.
, and
Ghaffari
,
R.
, 1984, “
Subharmonic and Chaotic Motions of Compliant Offshore Structure and Articulated Mooring Towers
,”
ASME J. Energy Resour. Technol.
0195-0738,
106
, pp.
191
198
.
16.
Choi
,
Han S.
, and
Lou
,
Jack Y. K.
, 1991, “
Nonlinear Behavior of an Articulated Offshore Loading Platforms
,”
Appl. Ocean. Res.
0141-1187,
13
(
2
), pp.
63
74
.
17.
Kim
,
Y. B.
, and
Noah
,
S. T.
, 1991, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics: A General Approach
,”
ASME J. Appl. Mech.
0021-8936,
58
, pp.
545
553
.
18.
Bar-Avi
,
P.
, and
Benaroya
,
H.
, 1996, “
Nonlinear Dynamics of an Articulated Tower in the Ocean
,”
J. Sound Vib.
0022-460X,
190
(
1
), pp.
77
103
.
19.
Datta
,
T. K.
, and
Jain
,
A. K.
, 1990, “
Response of Articulated Tower Platforms to Random Wind and Wave Forces
,”
Comput. Struct.
0045-7949,
34
(
1
), pp.
137
144
.
20.
Rajagopalan
,
A.
, and
Etatoc Taylor
,
R.
, 1982, “
Dynamics of Offshore Structure—Part II (Stochastic Averaging Analysis)
,”
J. Sound Vib.
0022-460X,
36
, pp.
417
426
.
21.
Lighthill
,
M. J.
, 1958,
Introduction to Fourier Analysis and Generalized Functions
,
Cambridge University Press
,
Cambridge
.
22.
Keener
,
J. P.
, 2000,
Principles of Applied Mathematics: Transformation and Approximation
,
Perseus Books
, Advanced Book Program,
Cambridge, MA
.
23.
Zemanian
,
A. H.
, 1987,
Distribution Theory and Transform Analysis: An Introduction to Generalized Functions, with Applications
,
Dover
,
New York
.
You do not currently have access to this content.