This paper describes an original approach for computing the stationary response of linear periodic time variant MDOF systems subjected to stationary stochastic external excitation. The proposed method is derived in the frequency domain, is purely numerical, and provides the explicit power spectral density (PSD) of the response. Its implementation first requires expressing the PSD response as a function of the bilinear Fourier transform of the so-called bitemporal impulse response. Then, the spectral method is used to compute the bispectrum function. The efficiency of this spectral process is demonstrated by comparison with Monte Carlo simulations on three parametrical systems. The computational time required and the accuracy are very satisfactory.

1.
Sinha
,
S. C.
, and
David
,
A.
, 2001,
Parametric Excitation
,
Academic
,
New York
.
2.
Friedmann
,
P.
,
Hammond
,
C. E.
, and
Woo
,
Tze-Hsin
, 1977, “
Efficient Numerical Treatment of Periodic Systems With Application to Stability Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
11
(
7
), pp.
1117
1136
.
3.
Marghitu
,
D. B.
,
Sinha
,
S. C.
, and
Boghiu
,
D.
, 1998, “
Stability and Control of a Parametrically Excited Rotating System. Part I: Stability Analysis
,”
Dyn. Control
0925-4668,
8
(
1
), pp.
5
18
.
4.
Nayfeh
,
A. H.
, 1973,
Perturbation Methods
,
Wiley Interscience
,
New York
.
5.
Othman
,
A. M.
,
Watt
,
D.
, and
Barr
,
A. D. S.
, 1987, “
Stability Boundaries of an Oscillator Under High Frequency Multicomponent Parametric Excitation
,”
J. Sound Vib.
0022-460X,
112
(
2
), pp.
249
259
.
6.
Yatawara
,
R. J.
,
Neilson
,
R. D.
, and
Barr
,
A. D. S.
, 2006, “
Theory and Experiment on Establishing the Stability Boundaries of a One-Degree-of-Freedom System Under Two High-Frequency Parametric Excitation Inputs
,”
J. Sound Vib.
0022-460X,
297
(
3–5
), pp.
962
980
.
7.
Suh
,
J. H.
,
Hong
,
S. W.
, and
Lee
,
C. W.
, 2005, “
Modal Analysis of Asymmetric Rotor System With Isotropic Stator Using Modulated Coordinates
,”
J. Sound Vib.
0022-460X,
284
(
3–5
), pp.
651
671
.
8.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations
,
Wiley-VCH
,
New York
.
9.
Perret-Liaudet
,
J.
, 1996, “
An Original Method for Computing the Response of a Parametrically Excited Forced System
,”
J. Sound Vib.
0022-460X,
196
(
2
), pp.
165
177
.
10.
Driot
,
N.
,
Lamarque
,
C. H.
, and
Berlioz
,
A.
, 2006, “
Theoretical and Experimental Analysis of a Base-Excited Rotor
,”
J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
257
263
.
11.
Ibrahim
,
R. A.
, 1985,
Parametric Random Vibration
, Research Studies,
John Wiley & Sons
,
London
.
12.
Proppe
,
C.
, 2003, “
Stochastic Linearization of Dynamical Systems Under Parametric Poisson White Noise Excitation
,”
Int. J. Non-Linear Mech.
0020-7462,
38
(
4
), pp.
543
555
.
13.
Di Paola
,
M.
, and
Falsone
,
G.
, 1997, “
Higher Order Statistics of the Response of MDOF Linear Systems Excited by Linearly Parametric White Noises and External Excitations
,”
Probab. Eng. Mech.
0266-8920,
12
(
3
), pp.
179
188
.
14.
Spires
,
J. M.
, and
Sinha
,
S. C.
, 1996, “
On the Response of Linear Time-Periodic Systems Subjected to Deterministic and Stochastic Excitations
,”
J. Vib. Control
1077-5463,
2
(
2
), pp.
219
249
.
15.
Falsone
,
G.
, 1992, “
Stochastic Linearization of MDOF Systems Under Parametric Excitations
,”
Int. J. Non-Linear Mech.
0020-7462,
27
(
6
), pp.
1025
1037
.
16.
Bellizzi
,
S.
, and
Defilippi
,
M.
, 2003, “
Non-Linear Mechanical Systems Identification Using Linear Systems With Random Parameters
,”
Mech. Syst. Signal Process.
0888-3270,
17
(
1
), pp.
203
210
.
17.
Axisa
,
F.
, 2001,
Vibrations sous écoulements
,
Hermes Sciences
,
Paris
.
18.
Bendat
,
J. S.
, 1990,
Nonlinear System Analysis and Identification From Random Data
,
Wiley
,
New York
.
19.
Bernard
,
P.
,
Fogli
,
M.
,
Bressolette
,
Ph.
, and
Lemaire
,
M.
, 1984, “
Algorithm for Stochastic Simulation by Approximate Markovianization. Application to Random Mechanics
,”
J. Mec. Theor. Appl.
0750-7240,
3
(
6
), pp.
905
950
.
20.
Yang
,
X. L.
, and
Sethna
,
P. R.
, 1991, “
Local and Global Bifurcations in Parametrically Excited Vibrations of Nearly Square Plates
,”
Int. J. Non-Linear Mech.
0020-7462,
26
(
2
), pp.
199
220
.
You do not currently have access to this content.