A hallmark of multibody dynamics is that most formulations involve a number of constraints. Typically, when redundant generalized coordinates are used, equations of motion are simpler to derive but constraint equations are present. While the dynamic behavior of constrained systems is well understood, the numerical solution of the resulting equations, potentially of differential-algebraic nature, remains problematic. Many different approaches have been proposed over the years, all presenting advantages and drawbacks: The sheer number and variety of methods that have been proposed indicate the difficulty of the problem. A cursory survey of the literature reveals that the various methods fall within broad categories sharing common theoretical foundations. This paper summarizes the theoretical foundations to the enforcement in constraints in multibody dynamics problems. Next, methods based on the use of Lagrange’s equation of the first kind, which are index-3 differential-algebraic equations in the presence of holonomic constraints, are reviewed. Methods leading to a minimum set of equations are discussed; in view of the numerical difficulties associated with index-3 approaches, reduction to a minimum set is often performed, leading to a number of practical algorithms using methods developed for ordinary differential equations. The goal of this paper is to review the features of these methods, assess their accuracy and efficiency, underline the relationship among the methods, and recommend approaches that seem to perform better than others.

1.
Schiehlen
,
W. O.
, 1984, “
Dynamics of Complex Multibody Systems
,”
SM Arch.
0376-7426,
9
, pp.
159
195
.
2.
Gear
,
C. W.
, and
Petzold
,
L. R.
, 1984, “
ODE Methods for the Solution of Differential∕Algebraic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
21
(
4
), pp.
716
728
.
3.
Lötstedt
,
P.
, and
Petzold
,
L. R.
, 1984, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints. I: Convergence Results for Backward Differentiation Formulas
,”
Math. Comput.
0025-5718,
46
(
174
), pp.
491
516
.
4.
Petzold
,
L. R.
, and
Lötstedt
,
P.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints. II: Practical Implications
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
7
(
3
), pp.
720
733
.
5.
Brenan
,
K. E.
,
Campbell
,
S. L.
, and
Petzold
,
L. R.
, 1989,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Problems
,
North-Holland
,
New York
.
6.
Maggi
,
G. A.
, 1896,
Principii della Teoria Matematica del Movimento Dei Corpi: Corso di Meccanica Razionale
,
Ulrico Hoepli
,
Milano
.
7.
Maggi
,
G. A.
, 1901, “
Di alcune nuove forme delle equazioni della dinamica applicabili ai systemi anolonomi
,”
Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Nat.
,
X
, pp.
287
291
.
8.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
, 1972,
Dynamics of Nonholonomic Systems
,
American Mathematical Society
,
Providence, RI
.
9.
Kurdila
,
A.
,
Papastavridis
,
J. G.
, and
Kamat
,
M. P.
, 1990, “
Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems
,”
J. Guid. Control Dyn.
0731-5090,
13
(
1
), pp.
113
120
.
10.
Papastavridis
,
J. G.
, 1990, “
Maggi’s Equations of Motion and the Determination of Constraint Reactions
,”
J. Guid. Control Dyn.
0731-5090,
13
(
2
), pp.
213
220
.
11.
Nikravesh
,
P. E.
, 1984, “
Some Methods for Dynamic Analysis of Constrained Mechanical Systems: A Survey
,” in
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E. J.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
351
367
.
12.
Hemami
,
H.
, and
Weimer
,
F. C.
, 1981, “
Modeling of Nonholonomic Dynamic Systems With Applications
,”
ASME J. Appl. Mech.
0021-8936,
48
, pp.
177
182
.
13.
Lötstedt
,
P.
, 1982, “
Mechanical Systems of Rigid Bodies Subjected to Unilateral Constraints
,”
SIAM J. Appl. Math.
0036-1399,
42
(
2
), pp.
281
296
.
14.
Gear
,
C. W.
,
Leimkuhler
,
B.
, and
Gupta
,
G. K.
, 1985, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12&13
, pp.
77
90
.
15.
Kane
,
T. R.
, and
Wang
,
C. F.
, 1965, “
On the Derivation of Equations of Motion
,”
J. Soc. Ind. Appl. Math.
0368-4245,
13
(
2
), pp.
487
492
.
16.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
17.
García de Jalón
,
J.
,
Unda
,
J.
,
Avello
,
A.
, and
Jiménez
,
J. M.
, 1987, “
Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
460
465
.
18.
Unda
,
J.
,
García de Jalón
,
J.
,
Losantos
,
F.
, and
Enparantza
,
R.
, 1987, “
A Comparative Study on Some Different Formulations of the Dynamic Equations of Constrained Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
466
474
.
19.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Mantegazza
,
P.
, 1992, “
Acceleration Projection Method in Multibody Dynamics
,”
Eur. J. Mech. A/Solids
0997-7538,
11
(
3
), pp.
403
418
.
20.
Udwadia
,
F. E.
,
Kalaba
,
R. E.
, and
Eun
,
H. C.
, 1997, “
Equations of Motion for Constrained Mechanical Systems and the Extended D’Alembert’s Principle
,”
Q. Appl. Math.
0033-569X,
55
(
2
), pp.
321
331
.
21.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1992, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
439
, pp.
407
410
.
22.
Kalaba
,
R. E.
, and
Udwadia
,
F. E.
, 1992, “
On Constrained Motion
,”
Appl. Math. Comput.
0096-3003,
51
, pp.
85
86
.
23.
Kalaba
,
R. E.
, and
Udwadia
,
F. E.
, 1993, “
Equations of Motion for Nonholonomic, Constrained Dynamical Systems Via Gauss’s Principle
,”
ASME J. Appl. Mech.
0021-8936,
60
, pp.
662
668
.
24.
Kalaba
,
R. E.
, and
Udwadia
,
F. E.
, 1994, “
Lagrangian Mechanics, Gauss’s Principle, Quadratic Programming, and Generalized Inverses: New Equations for Nonholonomically Constrained Discrete Mechanical Systems
,”
Q. Appl. Math.
0033-569X,
52
(
2
), pp.
229
241
.
25.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1993, “
On Motion
,”
J. Franklin Inst.
0016-0032,
330
(
3
), pp.
571
577
.
26.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1996, “
Equations of Motion for Mechnical Systems
,”
J. Aerosp. Eng.
0893-1321,
9
(
3
), pp.
64
69
.
27.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1995, “
The Geometry of Constrained Motion
,”
Z. Angew. Math. Mech.
0044-2267,
75
(
8
), pp.
637
640
.
28.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1998, “
The Explicit Gibbs-Appell Equation and Generalized Inverse Forms
,”
Q. Appl. Math.
0033-569X,
56
(
2
), pp.
277
288
.
29.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2002, “
What Is the General Form of the Explicit Equations of Motion for Constrained Mechanical System
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
335
339
.
30.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2002, “
On the Foundations of Analytical Dynamics
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
1079
1090
.
31.
Lilov
,
L.
, and
Lorer
,
M.
, 1982, “
Dynamic Analysis of Multirigid-Body Systems Based on Gauss Principle
,”
Z. Angew. Math. Mech.
0044-2267,
62
, pp.
539
545
.
32.
Orlandea
,
N.
,
Chace
,
M. A.
, and
Calahan
,
D. A.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part I
,”
ASME J. Eng. Ind.
0022-0817,
99
(
3
), pp.
773
779
.
33.
Orlandea
,
N.
,
Calahan
,
D. A.
, and
Chace
,
M. A.
, 1977, “
A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part II
,”
ASME J. Eng. Ind.
0022-0817,
99
(
3
), pp.
780
784
.
34.
Campbell
,
S. L.
, and
Leimkuhler
,
B.
, 1991, “
Differentiation of Constraints in Differential-Algebraic Equations
,”
Mech. Struct. Mach.
0890-5452,
19
(
1
), pp.
19
39
.
35.
Brauchli
,
H.
, 1991, “
Mass-Orthogonal Formulation of Equations of Motion for Multibody Systems
,”
ZAMP
0044-2275,
42
, pp.
169
182
.
36.
Brauchli
,
H.
, and
Weber
,
R.
, 1991, “
Dynamical Equations in Natural Coordinates
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
91
, pp.
1403
1414
.
37.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1989,
Matrix Computations
,
2nd ed.
,
The Johns Hopkins University Press
,
Baltimore
.
38.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Mantegazza
,
P.
, 1990, “
Equivalence of Kane’s and Maggi’s Equations
,”
Meccanica
0025-6455,
25
, pp.
272
274
.
39.
Maißer
,
P.
, 1991, “
Analytical Dynamics of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
91
, pp.
1391
1396
.
40.
Essén
,
H.
, 1994, “
On the Geometry of Nonholonomic Dynamics
,”
ASME J. Appl. Mech.
0021-8936,
61
, pp.
689
694
.
41.
Blajer
,
W.
, 1997, “
A Geometric Unification of Constrained System Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
3
21
.
42.
Blajer
,
W.
, 2001, “
A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics
,”
Z. Angew. Math. Mech.
0044-2267,
81
(
4
), pp.
247
259
.
43.
Gear
,
C. W.
, 1971,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice-Hall
,
Englewood Cliff, NJ
.
44.
Gear
,
C. W.
, 1971, “
Simultaneous Numerical Solution of Differential-Algebraic Equations
,”
IEEE Trans. Circuit Theory
0018-9324,
CT-18
(
1
), pp.
89
95
.
45.
Gear
,
C. W.
, 1984, “
Differential-Algebraic Equations
,”
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E. J.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
323
334
.
46.
Haug
,
E. J.
, 1984, “
Elements and Methods of Computational Dynamics
,”
Computer Aided Analysis and Optimization of Mechanical Systems Dynamics
,
E. J.
Haug
, ed.,
Springer-Verlag
,
Berlin
, pp.
3
38
.
47.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME J. Mech. Des.
0161-8458,
104
(
1
), pp.
247
255
.
48.
Walton
,
W. C.
, and
Steeves
,
E. C.
, 1969, “
A New Matrix Theorem and Its Application for Establishing Independent Coordinates for Complex Dynamical Systems With Constraints
,” NASA, Technical Report No. NASA TR R-326.
49.
Nikravesh
,
P. E.
, and
Chung
,
I. S.
, 1982, “
Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
785
791
.
50.
Singh
,
R. P.
, and
Likins
,
P. W.
, 1985, “
Singular Value Decomposition for Constrained Dynamical Systems
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
943
948
.
51.
Mani
,
N. K.
,
Haug
,
E. J.
, and
Atkinson
,
K. E.
, 1985, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
82
87
.
52.
Amirouche
,
F. M. L.
,
Jia
,
T.
, and
Ider
,
S. K.
, 1988, “
A Recursive Householder Transformation for Complex Dynamical Systems With Constraints
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
729
734
.
53.
Agrawal
,
O. P.
, and
Saigal
,
S.
, 1989, “
Dynamic Analysis of Multi-Body Systems Using Tangent Coordinates
,”
Comput. Struct.
0045-7949,
31
(
3
), pp.
349
355
.
54.
Liang
,
C. G.
, and
Lance
,
G. M.
, 1987, “
A Differentiable Null Space Method for Constrained Dynamic Analysis
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
109
, pp.
405
411
.
55.
Wampler
,
C.
,
Buffinton
,
K.
, and
Shu-hui
,
J.
, 1985, “
Formulation of Equations of Motion for Systems Subject to Constraints
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
465
470
.
56.
Kim
,
S. S.
, and
Vanderploeg
,
M. J.
, 1986, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
108
, pp.
183
188
.
57.
García de Jalón
,
J.
,
Serna
,
M. A.
, and
Avilés
,
R.
, 1981, “
Computer Method for Kinematic Analysis of Lower-Pair Mechanisms. I. Velocities and Accelerations
,”
Mech. Mach. Theory
0094-114X,
16
(
5
), pp.
543
556
.
58.
García de Jalón
,
J.
,
Serna
,
M. A.
, and
Avilés
,
R.
, 1981, “
Computer Method for Kinematic Analysis of Lower-Pair Mechanisms. II. Position Problems
,”
Mech. Mach. Theory
0094-114X,
16
(
5
), pp.
557
566
.
59.
García de Jalón
,
J.
,
Serna
,
M. A.
,
Viadero
,
F.
, and
Flaquer
,
J.
, 1982, “
A Simple Numerical Method for the Kinematic Analysis of Spatial Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
78
82
.
60.
Tárrago
,
J. A.
,
Serna
,
M. A.
,
Bastero
,
C.
, and
García de Jalón
,
J.
, 1982, “
A Computer Method for the Finite Displacement Problem in Spatial Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
869
874
.
61.
Serna
,
M. A.
,
Avilés
,
R.
, and
García de Jalón
,
J.
, 1982, “
Dynamic Analysis of Plane Mechanisms With Lower Pairs in Basic Coordinates
,”
Mech. Mach. Theory
0094-114X,
17
(
6
), pp.
397
403
.
62.
García de Jalón
,
J.
,
Jiménez
,
J. M.
,
Avello
,
A.
,
Martín
,
F.
, and
Cuadrado
,
J.
, 1990, “
Real Time Simulation of Complex 3-D Multibody Systems With Realistic Graphics
,”
Real-Time Integration Methods for Mechanical System Simulation
,
E. J.
Haug
and
R. C.
Deyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
265
292
.
63.
García De Jalón
,
J.
,
Unda
,
J.
, and
Avello
,
A.
, 1986, “
Natural Coordinates for the Computer Analysis of Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
56
, pp.
309
327
.
64.
Avello
,
A.
,
Jiménez
,
J. M.
,
Bayo
,
E.
, and
García de Jalón
,
J.
, 1993, “
A Simple and Highly Parallelizable Method for Real-Time Dynamic Simulation Based on Velocity Transformations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
107
, pp.
313
339
.
65.
Bauchau
,
O. A.
, and
Laulusa
,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011005
.
66.
Kamman
,
J. W.
, and
Huston
,
R. L.
, 1984, “
Constrained Multibody System Dynamics-an Automated Approach
,”
Comput. Struct.
0045-7949,
18
(
6
), pp.
999
1003
.
67.
Kamman
,
J. W.
, and
Huston
,
R. L.
, 1984, “
Dynamics of Constrained Multibody Systems
,”
ASME J. Appl. Mech.
0021-8936,
51
, pp.
899
903
.
68.
Chiou
,
J. C.
,
Park
,
K. C.
, and
Farhat
,
C.
, 1993, “
A Natural Partitioning Scheme for Parallel Simulation of Multibody Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
36
, pp.
945
967
.
69.
Park
,
K. C.
,
Chiou
,
J. C.
, and
Downer
,
J. D.
, 1990, “
Explicit-Implicit Staggered Procedure for Multibody Dynamics Analysis
,”
J. Guid. Control Dyn.
0731-5090,
13
(
3
), pp.
562
570
.
70.
Arabyan
,
A.
, and
Wu
,
F.
, 1998, “
An Improved Formulation for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
, pp.
49
69
.
71.
Blajer
,
W.
, 1992, “
A Projection Method Approach to Constrained Dynamic Analysis
,”
ASME J. Appl. Mech.
0021-8936,
59
, pp.
643
649
.
72.
Blajer
,
W.
, 1992, “
Projective Formulation of Maggi’s Method for Nonholonomic System Analysis
,”
J. Guid. Control Dyn.
0731-5090,
15
(
2
), pp.
522
525
.
73.
Blajer
,
W.
,
Schiehlen
,
W.
, and
Schirm
,
W.
, 1994, “
A Projective Criterion to the Coordinate Partitioning Method for Multibody Dynamics
,”
Arch. Appl. Mech.
0939-1533,
64
, pp.
86
98
.
74.
Blajer
,
W.
, 1995, “
An Orthonormal Tangent Space Method for Constrained Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
45
57
.
75.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Mantegazza
,
P.
, 1992, “
A Modified Phase Space Formulation for Constrained Mechanical Systems-Differential Approach
,”
Eur. J. Mech. A/Solids
0997-7538,
11
(
5
), pp.
701
727
.
You do not currently have access to this content.