Linearized stability analysis methodologies that are applicable to large scale, multiphysics problems are presented in this paper. Two classes of closely related algorithms based on a partial Floquet and on an autoregressive approach, respectively, are presented in common framework that underlines their similarity and their relationship to other methods. The robustness of the proposed approach is improved by using optimized signals that are derived from the proper orthogonal modes of the system. Finally, a signal synthesis procedure based on the identified frequencies and damping rates is shown to be an important tool for assessing the accuracy of the identified parameters; furthermore, it provides a means of resolving the frequency indeterminacy associated with the eigenvalues of the transition matrix for periodic systems. The proposed approaches are computationally inexpensive and consist of purely post processing steps that can be used with any multiphysics computational tool or with experimental data. Unlike classical stability analysis methodologies, it does not require the linearization of the equations of motion of the system.

1.
Bolotin
,
V. V.
, 1963,
Nonconservative Problems of the Theory of Elastic Stability
,
Pergamon
, Oxford.
2.
Goodwin
,
M. J.
, 1990,
Dynamics of Rotor-Bearing Systems
,
Unwinm Hyman
, London.
3.
Lalane
,
M.
, and
Ferraris
,
G.
, 1990,
Rotordynamics Prediction in Engineering
,
Wiley
, New York.
4.
Hochstadt
,
H.
, 1964,
Differential Equations
,
Dover
, New York.
5.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
, New York.
6.
Cardona
,
A.
, 1989, “
An Integrated Approach to Mechanism Analysis
,” Ph.D. thesis, Université de Liège.
7.
Cardona
,
A.
, and
Géradin
,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
0045-7949,
33
(
3
), pp.
801
820
.
8.
Bauchau
,
O. A.
,
Bottasso
,
C. L.
, and
Nikishkov
,
Y. G.
, 2001, “
Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures
,”
Math. Comput. Modell.
0895-7177,
33
(
10–11
), pp.
1113
1137
.
9.
Bauchau
,
O. A.
, and
Wang
,
J. L.
, 2006, “
Stability Analysis of Complex Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
(
1
), pp.
71
80
.
10.
Murphy
,
K. D.
,
Bayly
,
P. V.
,
Virgin
,
L. N.
, and
Gottwald
,
J. A.
, 1994, “
Measuring the Stability of Periodic Attractors Using Perturbation Induced Transients: Applications to Two Nonlinear Oscillators
,”
J. Sound Vib.
0022-460X,
172
, pp.
85
102
.
11.
Trickey
,
S. T.
,
Virgin
,
L. N.
, and
Dowell
,
E. H.
, 2002, “
The Stability of Limit Cycle Oscillations in a Nonlinear Aeroelastic System
,”
Proc. R. Soc. London, Ser. A
1364-5021,
458
, pp.
2203
2226
.
12.
Quaranta
,
G.
,
Mantegazza
,
P.
, and
Masarati
,
P.
, 2004, “
Assessing the Local Stability of Periodic Motions for Large Multibody Non-Linear Systems Using Proper Orthogonal Decomposition
,”
J. Sound Vib.
0022-460X,
271
, pp.
1015
1038
.
13.
Lathrop
,
D. P.
, and
Kostelich
,
E. J.
, 1989, “
Characterization of an Experimental Strange Attractor by Periodic Orbits
,”
Phys. Rev. A
1050-2947,
40
(
7
), pp.
4028
4031
.
14.
Antoulas
,
A. C.
,
Sorensen
,
D. C.
, and
Gugercin
,
S.
, 2001, “
A Survey of Model Reduction Methods for Large Scale Systems
,”
Contemp. Math.
0271-4132,
280
, pp.
193
219
.
15.
Ho
,
B.
, and
Kalman
,
R.
, 1996, “
Efficient Construction of Linear State Variable Models from Input/Output Functions
,”
Regelungstechnik
0370-6001,
14
, pp.
545
548
.
16.
Juang
,
J. N.
, and
Pappa
,
R. S.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction
,”
J. Guid. Control Dyn.
0731-5090,
8
(
5
), pp.
620
627
.
17.
Moore
,
B. C.
, 1981, “
Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction
,”
IEEE Trans. Autom. Control
0018-9286,
AC-26
(
1
), pp.
17
32
.
18.
Gugercin
,
S.
, and
Antoulas
,
A. C.
, 2004, “
A Survey of Model Reduction by Balanced Truncation and Some New Results
,”
Int. J. Control
0020-7179,
77
(
8
), pp.
748
766
.
19.
Durbin
,
J.
, 1959, “
Efficient Estimation of Parameter in Moving Average Models
,”
Biometrika
0006-3444,
46
, pp.
306
316
.
20.
Kay
,
S. M.
, and
Nagesha
,
V.
, 1994, “
Maximum Likelihood Estimation of Signals in Autoregressive Noise
,”
IEEE Trans. Signal Process.
1053-587X,
42
(
1
), pp.
88
101
.
21.
Gautier
,
P. E.
,
Gontier
,
C.
, and
Smail
,
M.
, 1995, “
Robustness of an Arma Identification Method for Modal Analysis of Mechanical Systems in the Presence of Noise
,”
J. Sound Vib.
0022-460X,
179
(
2
), pp.
227
242
.
22.
Glover
,
K.
, 1984, “
All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L Inf-Error Bounds
,”
Int. J. Control
0020-7179,
39
(
4
), pp.
1115
1193
.
23.
Shin
,
K.
,
Hammon
,
J. K.
, and
White
,
P. R.
, 1999, “
Iterative SVD method for Noise Reduction of Low-Dimensional Chaotic Time Series
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
1
), pp.
115
124
.
24.
Pearson
,
K.
, 1901, “
On Lines and Planes of Closest Fit to Points in Space
,”
Philos. Mag.
0031-8086,
2
, pp.
609
629
.
25.
Lieu
,
T.
,
Farhat
,
C.
, and
Lesoinne
,
M.
, in press, “
Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration
,” Comput. Methods Appl. Mech. Eng.
26.
Bialecki
,
R. A.
,
Kassab
,
A. J.
, and
Fic
,
A.
, 2005, “
Proper Orthogonal Decomposition and Modal Analysis for Acceleration of Transient Fem Thermal Analysis
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
6
), pp.
774
797
.
27.
Lall
,
S.
,
Marsden
,
J. E.
, and
Glavaśki
,
S.
, 2002, “
A Subspace Approach to Balanced Truncation for Model Reduction of Nonlinear Control Systems
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
(
5
), pp.
519
535
.
28.
Feeny
,
B. F.
, and
Kappagantu
,
R.
, 1998, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
0022-460X,
211
(
4
), pp.
607
61
1.
29.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
, 2001, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
0022-460X,
240
(
5
), pp.
859
889
.
30.
Wang
,
X.
, and
Peters
,
D. A.
, 1997, “
Floquet Analysis in the Absence of Complete Information on States and Perturbations
,”
Proceedings of the Seventh International Workshop on Dynamics and Aeroelasticity Stability Modeling
,
St. Louis
, October 14–16, pp.
237
248
.
31.
Peters
,
D. A.
, and
Wang
,
X.
, 1998, “
Generalized Floquet Theory for Analysis of Numerical or Experimental Rotor Response Data
,”
Proceedings of the 24th European Rotorcraft Forum
,
Marseilles
, France, September.
32.
Golub
,
G. H.
, and
Van Loan
,
C. F.
, 1989,
Matrix Computations
,
2nd ed.
,
The Johns Hopkins University Press
, Baltimore.
33.
Ewins
,
D. J.
, 1984,
Modal Testing: Theory and Practice
,
Wiley
, New York.
34.
Lardies
,
J.
, 1996, “
Analysis of Multivariate Autoregressive Process
,”
Mech. Syst. Signal Process.
0888-3270,
10
(
6
), pp.
747
761
.
35.
Demmel
,
J. W.
, 1997,
Applied Numerical Linear Algebra
,
SIAM
, Philadelphia.
36.
Trefethen
,
L. N.
, and
Bau
III,
D.
, 1997,
Numerical Linear Algebra
,
SIAM
, Philadelphia.
37.
Fierro
,
R. D.
, and
Jiang
,
E. P.
, 2005, “
Lanczos and the Riemannian SVD in Information Retrieval Applications
,”
Numer. Linear Algebra Appl.
1070-5325,
12
, pp.
355
372
.
38.
Kokiopoulou
,
E.
,
Bekas
,
C.
, and
Gallopoulos
,
E.
, 2004, “
Computing Smallest Singular Triplets With Implicitly Restarted Lanczos Bidiagonalization
,”
Appl. Numer. Math.
0168-9274,
49
, pp.
39
61
.
39.
Bauchau
,
O. A.
, 1998, “
Computational Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
2
), pp.
169
225
.
40.
Bauchau
,
O. A.
, and
Rodriguez
,
J.
, 2002, “
Modeling of Joints With Clearance in Flexible Multibody Systems
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
41
63
.
41.
Goland
,
M.
, 1945, “
The Flutter of a Uniform Cantilever Wing
,”
ASME J. Appl. Mech.
0021-8936,
12
(
4
), pp.
A197
A208
.
42.
Peters
,
D. A.
,
Karunamoorthy
,
S.
, and
Cao
,
W. M.
, 1995 “
Finite State Induced Flow Models. Part I: Two-Dimensional Thin Airfoil
,”
J. Aircr.
0021-8669,
32
, pp.
313
322
.
43.
Peters
,
D. A.
, and
He
,
C. J.
, 1995, “
Finite State Induced Flow Models. Part II: Three-Dimensional Rotor Disk
,”
J. Aircr.
0021-8669,
32
, pp.
323
333
.
44.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
, 1955,
Aeroelasticity
,
2nd ed.
,
Addison-Wesley
, Reading, MA.
You do not currently have access to this content.