Abstract

In this paper, we explore a geometric algebra-based approach to model the dynamics of a geometrically exact beam with large deflections. The configuration space of the beam is parametrized with geometric algebra Cl3,0,1, which indicates the rotation and translation fields are interpolated in a coupled manner. We derive the dynamic equations by applying the Lagrangian method and employing a full discretization approach. This methodology is well-suited for modeling the large deflection deformations of the beam while preserving the symplectic structure in long-term simulations. Finally, we validate the proposed approach through some numerical examples, demonstrating its computational efficiency compared to matrix-based methods.

References

1.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. the Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.10.1016/0045-7825(85)90050-7
2.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
855
863
. 1210.1115/1.3171871
3.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part I
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
854
.10.1115/1.3171870
4.
Antman
,
S. S.
,
2013
,
Nonlinear Problems of Elasticity
,
Springer
,
New York
.
5.
Rucker
,
D. C.
, and
Webster
,
R. J.
III
,
2011
, “
Statics and Dynamics of Continuum Robots With General Tendon Routing and External Loading
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1033
1044
.10.1109/TRO.2011.2160469
6.
Trivedi
,
D.
,
Lotfi
,
A.
, and
Rahn
,
C. D.
,
2008
, “
Geometrically Exact Models for Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
24
(
4
), pp.
773
780
.10.1109/TRO.2008.924923
7.
Tummers
,
M.
,
Lebastard
,
V.
,
Boyer
,
F.
,
Troccaz
,
J.
,
Rosa
,
B.
, and
Chikhaoui
,
M. T.
,
2023
, “
Cosserat Rod Modeling of Continuum Robots From Newtonian and Lagrangian Perspectives
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
2360
2378
.10.1109/TRO.2023.3238171
8.
Rucker
,
D. C.
,
Jones
,
B. A.
, and
Webster
,
R. J.
, III
,
2010
, “
A Geometrically Exact Model for Externally Loaded Concentric-Tube Continuum Robots
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
769
780
.10.1109/TRO.2010.2062570
9.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Rob. Res.
,
38
(
6
), pp.
723
746
.10.1177/0278364919842269
10.
Janabi-Sharifi
,
F.
,
Jalali
,
A.
, and
Walker
,
I. D.
,
2021
, “
Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial
,”
IEEE Access
,
9
, pp.
68703
68719
.10.1109/ACCESS.2021.3077186
11.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE (3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
.10.1016/j.cma.2013.10.008
12.
Demoures
,
F.
,
Gay-Balmaz
,
F.
,
Leyendecker
,
S.
,
Ober-Blöbaum
,
S.
,
Ratiu
,
T. S.
, and
Weinand
,
Y.
,
2015
, “
Discrete Variational Lie Group Formulation of Geometrically Exact Beam Dynamics
,”
Numer. Math.
,
130
(
1
), pp.
73
123
.10.1007/s00211-014-0659-4
13.
Chadha
,
M.
, and
Todd
,
M. D.
,
2017
, “
An Introductory Treatise on Reduced Balance Laws of Cosserat Beams
,”
Int. J. Solids Struct.
,
126-127
, pp.
54
73
.10.1016/j.ijsolstr.2017.07.028
14.
Boyer
,
F.
,
Lebastard
,
V.
,
Candelier
,
F.
,
Renda
,
F.
, and
Alamir
,
M.
,
2023
, “
Statics and Dynamics of Continuum Robots Based on Cosserat Rods and Optimal Control Theories
,”
IEEE Trans. Rob.
,
39
(
2
), pp.
1544
1562
.10.1109/TRO.2022.3226112
15.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
16.
Wenger
,
T.
,
Ober-Blöbaum
,
S.
, and
Leyendecker
,
S.
,
2017
, “
Construction and Analysis of Higher Order Variational Integrators for Dynamical Systems With Holonomic Constraints
,”
Adv. Comput. Math.
,
43
(
5
), pp.
1163
1195
.10.1007/s10444-017-9520-5
17.
Hall
,
J.
, and
Leok
,
M.
,
2017
, “
Lie Group Spectral Variational Integrators
,”
Found. Comput. Math.
,
17
(
1
), pp.
199
257
. feb10.1007/s10208-015-9287-3
18.
Leitz
,
T.
, and
Leyendecker
,
S.
,
2018
, “
Galerkin Lie-Group Variational Integrators Based on Unit Quaternion Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
338
, pp.
333
361
.10.1016/j.cma.2018.04.022
19.
Leitz
,
T.
,
Sato Martín de Almagro
,
R. T.
, and
Leyendecker
,
S.
,
2021
, “
Multisymplectic Galerkin Lie Group Variational Integrators for Geometrically Exact Beam Dynamics Based on Unit Dual Quaternion Interpolation—No Shear Locking
,”
Comput. Methods Appl. Mech. Eng.
,
374
, p.
113475
.10.1016/j.cma.2020.113475
20.
Chen
,
J.
,
Huang
,
Z.
, and
Tian
,
Q.
,
2022
, “
A Multisymplectic Lie Algebra Variational Integrator for Flexible Multibody Dynamics on the Special Euclidean Group SE (3)
,”
Mech. Mach. Theory
,
174
, p.
104918
.10.1016/j.mechmachtheory.2022.104918
21.
Ren
,
H.
,
Fan
,
W.
, and
Zhu
,
W.
,
2018
, “
An Accurate and Robust Geometrically Exact Curved Beam Formulation for Multibody Dynamic Analysis
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011012
.10.1115/1.4037513
22.
Sonneville
,
V.
,
Brüls
,
O.
, and
Bauchau
,
O. A.
,
2017
, “
Interpolation Schemes for Geometrically Exact Beams: A Motion Approach
,”
Int. J. Numer. Methods Eng.
,
112
(
9
), pp.
1129
1153
.10.1002/nme.5548
23.
Hante
,
S.
,
Tumiotto
,
D.
, and
Arnold
,
M.
,
2022
, “
A Lie Group Variational Integration Approach to the Full Discretization of a Constrained Geometrically Exact Cosserat Beam Model
,”
Multibody Syst. Dyn.
,
54
(
1
), pp.
97
123
.10.1007/s11044-021-09807-8
24.
Gunn
,
C. G.
,
2017
, “
Doing Euclidean Plane Geometry Using Projective Geometric Algebra
,”
Adv. Appl. Clifford Algebras
,
27
(
2
), pp.
1203
1232
.10.1007/s00006-016-0731-5
25.
Gunn
,
C.
,
2017
, “
Geometric Algebras for Euclidean Geometry
,”
Adv. Appl. Clifford Algebras
,
27
(
1
), pp.
185
208
.10.1007/s00006-016-0647-0
26.
Dorst
,
L.
,
De Keninck
,
S.
,
2020
, “
A Guided Tour to the Plane-Based Geometric Algebra PGA
,” University of Amsterdam, Amsterdam, The Netherlands, accessed Mar. 14, 2024, https://bivector. net/PGA4CS. html
27.
Hestenes
,
D.
, and
Sobczyk
,
G.
,
1984
,
Clifford Algebra to Geometric Calculus
,
Springer
,
Dordrecht, Netherlands
.
28.
Sun
,
G.
, and
Ding
,
Y.
,
2023
, “
High-Order Inverse Dynamics of Serial Robots Based on Projective Geometric Algebra
,”
Multibody Syst. Dyn.
,
59
(
3
), pp.
337
362
.10.1007/s11044-023-09915-7
29.
Kanatani
,
K.
,
2015
,
Understanding Geometric Algebra: Hamilton, Grassmann, and Clifford for Computer Vision and Graphics
, 1st ed.,
A K Peters/CRC Press
,
New York
.
30.
Müller
,
A.
,
2017
, “
Coordinate Mappings for Rigid Body Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021010
.10.1115/1.4034730
31.
Marsden
,
J. E.
, and
West
,
M.
,
2001
, “
Discrete Mechanics and Variational Integrators
,”
Acta Numer.
,
10
, pp.
357
514
.10.1017/S096249290100006X
32.
Demoures
,
F.
,
Gay-Balmaz
,
F.
,
Kobilarov
,
M.
, and
Ratiu
,
T. S.
,
2014
, “
Multisymplectic Lie Group Variational Integrator for a Geometrically Exact Beam in r3
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
10
), pp.
3492
3512
.10.1016/j.cnsns.2014.02.032
33.
Crisfield
,
M. A.
, and
Jelenić
,
G.
,
1999
, “
Objectivity of Strain Measures in the Geometrically Exact Three-Dimensional Beam Theory and Its Finite-Element Implementation
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
, 455(1983), pp.
1125
1147
.10.1098/rspa.1999.0352
34.
Sauer
,
T.
,
2014
,
Numerical Analysis
, 2nd ed.,
Pearson Education
,
Edinburgh
.
35.
Broyden
,
C. G.
,
1965
, “
A Class of Methods for Solving Nonlinear Simultaneous Equations
,”
Math. Comput.
,
19
(
92
), pp.
577
593
.10.1090/S0025-5718-1965-0198670-6
36.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031002
.10.1115/1.4001370
37.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics: Recursive Algorithms and Equations of Motion of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
42
(
2
), pp.
219
248
.10.1007/s11044-017-9583-6
38.
Müller
,
A.
,
2021
, “
Review of the Exponential and Cayley Map on SE (3) as Relevant for Lie Group Integration of the Generalized Poisson Equation and Flexible Multibody Systems
,”
Proc. R. Soc. A
,
477
(
2253
), p.
20210303
.10.1098/rspa.2021.0303
39.
Iserles
,
A.
,
1984
, “
Solving Linear Ordinary Differential Equations by Exponentials of Iterated Commutators
,”
Numer. Math.
,
45
(
2
), pp.
183
199
.10.1007/BF01389464
40.
Bullo
,
F.
, and
Murray
,
R. M.
,
1995
, “
Proportional Derivative (PD) Control on the Euclidean Group
,”
California Institute of Technology
,
California
, Report No. Report No. Caltech/CDS
95
010
.
You do not currently have access to this content.