Abstract

Chaotic dynamics occur in rotating shafts mounted on sliding bearings under specific design and operating conditions. Despite the fact that chaos does not definitely prevent the operation of rotating machines, it may result in higher frictional power loss and temperature rise in bearings, compared to the case when periodic or quasi-periodic motions evolve in the operation; it is also likely to compromise the integrity of the system when whirling orbits evolve in a large extent. A rotor-bearing system consisting of a rigid rotor mounted on two journal bearings is used in this work to produce chaotic dynamics. The chaotic operation regimes of the system are first detected estimating Lyapunov exponents, 0–1 test for chaos, and Poincaré maps. Sliding bearings of active geometry are included in the physical model to enable the Ott-Grebogi-Yorke (OGY) control method as a reference solution to convert chaotic oscillations to periodic. The benefits from controlling chaos in the rotating system are investigated for a set of designs, considering frictional power loss, together with further aspects of integrity and operability of the system, like journal eccentricity. It is found that the OGY method is able to control the chaotic response and produce periodic motions of desired period, with low control effort. The results create a potential for smooth periodic motions in high-speed rotating systems.

References

1.
Shaw
,
S. W.
,
1988
, “
Chaotic Dynamics of a Slender Beam Rotating About Its Longitudinal Axis
,”
J. Sound Vib.
,
124
(
2
), pp.
329
343
.10.1016/S0022-460X(88)80191-3
2.
Gupta
,
T. C.
,
Gupta
,
K.
, and
Sehgal
,
D. K.
,
2011
, “
Instability and Chaos of a Flexible Rotor Ball Bearing System: An Investigation on the Influence of Rotating Imbalance and Bearing Clearance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
082501
.10.1115/1.4002657
3.
Tiwari
,
M.
,
Gupta
,
K.
, and
Prakash
,
O.
,
2000
, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.10.1006/jsvi.1999.3108
4.
Mevel
,
B.
, and
Guyader
,
J. L.
,
1993
, “
Routes to Chaos in Ball Bearings
,”
J. Sound Vib.
,
162
(
3
), pp.
471
487
.10.1006/jsvi.1993.1134
5.
Sankaravelu
,
A.
,
Noah
,
S. T.
, and
Burger
,
C. P.
,
1994
, “
Bifurcation and Chaos in Ball Bearings
,”
Nonlinear Stochastic Dyn.,
192, pp.
313
325
.
6.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1996
, “
Chaotic Motions of a Rigid Rotor in Short Journal Bearings
,”
Nonlinear Dyn.
,
10
(
3
), pp.
251
269
.10.1007/BF00045106
7.
Adiletta
,
G.
,
Guido
,
A. R.
, and
Rossi
,
C.
,
1997
, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings
,”
Nonlinear Dyn.
,
14
(
2
), pp.
157
189
.10.1023/A:1008275231189
8.
Paiva
,
A.
,
Moreira
,
R. V.
,
Brandão
,
A.
, and
Savi
,
M. A.
,
2023
, “
Nonlinear Dynamics of a Rotor–Stator System With Contacts
,”
Nonlinear Dyn.
,
111
(
13
), pp.
11753
11772
.10.1007/s11071-023-08497-5
9.
Zhang
,
R.
,
de S.Cavalcante
,
H. L. D.
,
Gao
,
Z.
,
Gauthier
,
D. J.
,
Socolar
,
J. E. S.
,
Adams
,
M. M.
, and
Lathrop
,
D. P.
,
2009
, “
Boolean Chaos
,”
Phys. Rev. E
,
80
(
4
), p.
045202
.10.1103/PhysRevE.80.045202
10.
Hoffman
,
R. N.
,
2002
, “
Controlling the Global Weather
,”
Bul. Am. Meteorol. Soc.
,
83
(
2
), pp.
241
248
.10.1175/1520-0477(2002)083<0241:CTGW>2.3.CO;2
11.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
12.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Let. A
,
170
(
6
), pp.
421
428
.10.1016/0375-9601(92)90745-8
13.
de Paula
,
A. S.
, and
Savi
,
M. A.
,
2009
, “
A Multiparameter Chaos Control Method Based on OGY Approach
,”
Chaos, Solitons Fractals
,
40
(
3
), pp.
1376
1390
.10.1016/j.chaos.2007.09.056
14.
Pereira-Pinto
,
F. H. I.
,
Ferreira
,
A. M.
, and
Savi
,
M. A.
,
2004
, “
Chaos Control in a Nonlinear Pendulum Using a Semi-Continuous Method
,”
Chaos, Solitons Fractals
,
22
(
3
), pp.
653
668
.10.1016/j.chaos.2004.02.047
15.
Barrett
,
T. S.
,
Palazzolo
,
A. B.
, and
Kascak
,
A. F.
,
1995
, “
Active Vibration Control of Rotating Machinery Using Piezoelectric Actuators Incorporating Flexible Casing Effects
,”
ASME J. Eng. Gas Turb. Power
,
117
(
1
), pp.
176
187
.10.1115/1.2812770
16.
Palazzolo
,
A.
,
Lin
,
R. R.
,
Alexander
,
R. M.
,
Kascak
,
A. F.
, and
Montague
,
J.
,
1991
, “
Test and Theory for Piezoelectric Actuator-Active Vibration Control of Rotating Machinery
,”
ASME J. Vib. Acoust.
,
113
(
2
), pp.
167
175
.10.1115/1.2930165
17.
Santos
,
I.
, and
Russo
,
F. H.
,
1998
, “
Tilting-Pad Journal Bearings With Electronic Radial Oil Injection
,”
ASME J. Tribol.
,
120
(
3
), pp.
583
594
.10.1115/1.2834591
18.
Santos
,
I.
, and
Scalabrin
,
A.
,
2003
, “
Control System Design for Active Lubrication With Theoretical and Experimental Examples
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
75
80
.10.1115/1.1451757
19.
Estupinan
,
E.
, and
Santos
,
I.
,
2012
, “
Controllable Lubrication for Main Engine Bearings Using Mechanical and Piezoelectric Actuators
,”
IEEE-ASME Trans. Mechatronics
,
17
(
2
), pp.
279
287
.10.1109/TMECH.2010.2099663
20.
Tůma
,
J.
,
Šimek
,
J.
,
Škuta
,
J.
, and
Los
,
J.
,
2013
, “
Active Vibrations Control of Journal Bearings With the Use of Piezoactuators
,”
Mech. Syst. Signal Process.
,
36
(
2
), pp.
618
629
.10.1016/j.ymssp.2012.11.010
21.
Tuma
,
J.
,
Simek
,
J.
,
Mahdal
,
M.
,
Pawlenka
,
M.
, and
Pavelka
,
V.
,
2019
, “
An Actively Controlled Journal Bearing With Increased Resistance to Instability
,”
MM Sci. J.
,
2019
(
1
), pp.
2849
2854
.10.17973/MMSJ.2019_03_201897
22.
Chasalevris
,
A.
, and
Dohnal
,
F.
,
2015
, “
A Journal Bearing With Variable Geometry for the Suppression of Vibrations in Rotating Shafts: Simulation, Design, Construction and Experiment
,”
Mech. Syst. Signal Process.
,
52-53
(
1
), pp.
506
528
.10.1016/j.ymssp.2014.07.002
23.
Chasalevris
,
A.
, and
Guignier
,
G.
,
2019
, “
Alignment and Rotordynamic Optimization of Turbine Shaft Trains Using Adjustable Bearings in Real-Time Operation
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
233
(
7
), pp.
2379
2399
.10.1177/0954406218791636
24.
Balthazar
,
J. M.
,
Bassinello
,
D. G.
,
Tusset
,
A. M.
,
Bueno
,
Á. M.
, and
Rodrigues de Pontes Junior
,
B.
,
2014
, “
Nonlinear Control in an Electromechanical Transducer With Chaotic Behaviour
,”
Meccanica
,
49
, pp.
1859
1867
.
25.
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2004
, “
On an Optimal Control Design for Rössler System
,”
Phys. Lett. A
,
333
(
3–4
), pp.
241
245
.10.1016/j.physleta.2004.10.032
26.
Tusset
,
A. M.
,
Balthazar
,
J. M.
,
Bassinello
,
D. G.
,
Pontes
,
B. R.
Jr.
, and
Felix
,
J. L. P.
,
2012
, “
Statements on Chaos Control Designs, Including a Fractional Order Dynamical System, Applied to a MEMS Comb-Drive Actuator
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1837
1857
.10.1007/s11071-012-0390-6
27.
Shirazi
,
M. J.
,
Vatankhah
,
R.
,
Boroushaki
,
M.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2012
, “
Application of Particle Swarm Optimization in Chaos Synchronization in Noisy Environment in Presence of Unknown Parameter Uncertainty
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
2
), pp.
742
753
.10.1016/j.cnsns.2011.05.032
28.
Theiler
,
J.
,
1990
, “
Estimating Fractal Dimension
,”
J. Opt. Soc. Am.
,
7
(
6
), p.
1055
.10.1364/JOSAA.7.001055
29.
Gottwald
,
G. A.
, and
Melbourne
,
I.
,
2009
, “
On the Implementation of the 0–1 Test for Chaos
,”
Siam J. Appl. Dyn. Syst.
,
8
(
1
), pp.
129
145
.10.1137/080718851
30.
Hori
,
Y.
,
2016
,
Hydrodynamic Lubrication
,
Springer
, Tokyo, Japan.
31.
Ocvirk
,
F. W.
,
1952
, “
Short-Bearing Approximation for Full Journal Bearings
,” NACA, Washington, DC, Report No. 2808, https://ntrs.nasa.gov/api/citations/19930083541/downloads/19930083541.pdf
32.
Mathworks,
2023
,
Matlab ODE Solver
,
Mathworks
, Natick, MA.
33.
Doedel
,
E. J.
,
2007
,
Lecture Notes on Numerical Analysis of Nonlinear Equations
,
Department of Computer Science, Concordia University
,
Montreal, QC, Canada
.
34.
Allgower
,
E. L.
, and
Georg
,
K.
,
2012
,
Numerical Continuation Methods
,
Springer Science & Business Media
, Heidelberg, Germany.
35.
Witvoet
,
G.
,
2005
, “
Control of Chaotic Dynamical Systems Using OGY
,” Technische Uni. Eindhoven, Eindhoven, The Netherlands, Report No.
DCT 2005.36
. https://pure.tue.nl/ws/portalfiles/portal/4335094/612752.pdf
36.
Leonardo
,
Peterson
,
J.
,
Pereira
,
M.
, and
Cunha
,
A.
,
2019
, “
Control of Chaos Via OGY Method on a Bistable Energy Harvester
,”
Proceedings of the 25th International Congress of Mechanical Engineering
, Uberlândia, Brazil, Oct. 20–5, pp.
1
8
.https://hal.science/hal-02388460/document
37.
Nordstrom
,
K.
, and
Norlander
,
H.
,
2002
, “
On the Multi Input Pole Placement Control Problem
,”
Proceedings 36th IEEE Conference on Decision and Control
,
San Diego
, CA, Dec. 12, pp.
4288
4293
.10.1109/CDC.1997.649511
38.
Lathrop
,
D. P.
, and
Kostelich
,
E. J.
,
1989
, “
Characterization of an Experimental Strange Attractor by Periodic Orbits
,”
Phys. Rev.
,
40
(
7
), pp.
4028
4031
.10.1103/PhysRevA.40.4028
You do not currently have access to this content.