Abstract

A parametric lattice model is formulated to describe the dispersion properties of harmonic elastic waves propagating in two-dimensional textile metamaterials. Within a weak nonlinear regime, the free undamped motion of the textile metamaterial, starting from a spatially periodic prestressed configuration, is governed by nonlinear differential difference equations, where nonlinearities arise from the elastic contact between plain woven yarns. Within the linear field, the linear dispersion properties characterizing the regime of small oscillation amplitudes are obtained, by applying the Bloch’s theorem. Parametric analyses are carried out to study the influence of the mechanical parameters on wavefrequencies, waveforms, and group velocities. As major outcome, the dispersion spectrum is found to possess two distinct passbands, covering the low- and the high-frequency ranges, respectively, while a complete midfrequency bandgap exists for large parameter regions. Within the nonlinear field, the nonlinear wavefrequencies and the multiharmonic nonresonant response in the time domain are described, by means of perturbation techniques. As interesting finding, the free wave is shown to propagate with a systematic softening behavior. The wave polarization exalts the nonlinear effects in the high-frequency passband.

References

1.
Romeo
,
F.
, and
Ruzzene
,
M.
,
2013
,
Wave Propagation in Linear and Nonlinear Periodic Media: Analysis and Applications
, Vol.
540
,
Springer Science and Business Media
, Vienna, Austria.10.1007/978-3-7091-1309-7
2.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,” ASME
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.10.1115/1.4026911
3.
Patil
,
G. U.
, and
Matlack
,
K. H.
,
2022
, “
Review of Exploiting Nonlinearity in Phononic Materials to Enable Nonlinear Wave Responses
,”
Acta Mech.
,
233
(
1
), pp.
1
46
.10.1007/s00707-021-03089-z
4.
Fang
,
X.
,
Lacarbonara
,
W.
, and
Cheng
,
L.
,
2024
, “
Advances in Nonlinear Acoustic/Elastic Metamaterials and Metastructures
,”
Nonlinear Dyn.
, pp. 1–28.10.1007/s11071-024-10219-4
5.
Fronk
,
M. D.
,
Fang
,
L.
,
Packo
,
P.
, and
Leamy
,
M. J.
,
2023
, “
Elastic Wave Propagation in Weakly Nonlinear Media and Metamaterials: A Review of Recent Developments
,”
Nonlinear Dyn.
,
111
(
12
), pp.
10709
10741
.10.1007/s11071-023-08399-6
6.
Jiao
,
P.
,
Mueller
,
J.
,
Raney
,
J. R.
,
Zheng
,
X.
, and
Alavi
,
A. H.
,
2023
, “
Mechanical Metamaterials and Beyond
,”
Nat. Commun.
,
14
(
1
), p.
6004
.10.1038/s41467-023-41679-8
7.
Arena
,
A.
,
Bacigalupo
,
A.
, and
Lepidi
,
M.
,
2022
, “
Wave Propagation in Viscoelastic Metamaterials Via Added-State Formulation
,”
Int. J. Mech. Sci.
,
228
, p.
107461
.10.1016/j.ijmecsci.2022.107461
8.
Krushynska
,
A. O.
,
Torrent
,
D.
,
Aragón
,
A. M.
,
Ardito
,
R.
,
Bilal
,
O. R.
,
Bonello
,
B.
,
Bosia
,
F.
,
et al.
,
2023
, “
Emerging Topics in Nanophononics and Elastic, Acoustic, and Mechanical Metamaterials: An Overview
,”
Nanophotonics
,
12
(
4
), pp.
659
686
.10.1515/nanoph-2022-0671
9.
Lazarov
,
B. S.
, and
Jensen
,
J. S.
,
2007
, “
Low-Frequency Band Gaps in Chains With Attached Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
42
(
10
), pp.
1186
1193
.10.1016/j.ijnonlinmec.2007.09.007
10.
Narisetti
,
R. K.
,
Ruzzene
,
M.
, and
Leamy
,
M. J.
,
2012
, “
Study of Wave Propagation in Strongly Nonlinear Periodic Lattices Using a Harmonic Balance Approach
,”
Wave Motion
,
49
(
2
), pp.
394
410
.10.1016/j.wavemoti.2011.12.005
11.
Lepidi
,
M.
, and
Settimi
,
V.
,
2025
, “
Harmonic and Superharmonic Wave Propagation in 2D Mechanical Metamaterials With Inertial Amplification
,”
Appl. Math. Modell.
,
138
, p.
115770
.10.1016/j.apm.2024.115770
12.
Narisetti
,
R. K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2010
, “
A Perturbation Approach for Predicting Wave Propagation in One-Dimensional Nonlinear Periodic Structures
,” ASME
J. Vib. Acoust.
,
132
(
3
), p.
031001
.10.1115/1.4000775
13.
Campana
,
M.-A.
,
Ouisse
,
M.
,
Sadoulet-Reboul
,
E.
,
Ruzzene
,
M.
,
Neild
,
S.
, and
Scarpa
,
F.
,
2020
, “
Impact of Non-Linear Resonators in Periodic Structures Using a Perturbation Approach
,”
Mech. Syst. Signal Process.
,
135
, p.
106408
.10.1016/j.ymssp.2019.106408
14.
Vakakis
,
A. F.
, and
King
,
M. E.
,
1995
, “
Nonlinear Wave Transmission in a Monocoupled Elastic Periodic System
,”
J. Acoust. Soc. Am.
,
98
(
3
), pp.
1534
1546
.10.1121/1.413419
15.
Manktelow
,
K.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2011
, “
Multiple Scales Analysis of Wave–Wave Interactions in a Cubically Nonlinear Monoatomic Chain
,”
Nonlinear Dyn.
,
63
(
1–2
), pp.
193
203
.10.1007/s11071-010-9796-1
16.
Lepidi
,
M.
, and
Bacigalupo
,
A.
,
2019
, “
Wave Propagation Properties of One-Dimensional Acoustic Metamaterials With Nonlinear Diatomic Microstructure
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2711
2735
.10.1007/s11071-019-05032-3
17.
Settimi
,
V.
,
Lepidi
,
M.
, and
Bacigalupo
,
A.
,
2021
, “
Nonlinear Dispersion Properties of One-Dimensional Mechanical Metamaterials With Inertia Amplification
,”
Int. J. Mech. Sci.
,
201
, p.
106461
.10.1016/j.ijmecsci.2021.106461
18.
Shen
,
Y.
, and
Lacarbonara
,
W.
,
2023
, “
Nonlinearity Enhanced Wave Bandgaps in Metamaterial Honeycombs Embedding Spider Web-Like Resonators
,”
J. Sound Vib.
,
562
, p.
117821
.10.1016/j.jsv.2023.117821
19.
Fortunati
,
A.
,
Bacigalupo
,
A.
,
Lepidi
,
M.
,
Arena
,
A.
, and
Lacarbonara
,
W.
,
2022
, “
Nonlinear Wave Propagation in Locally Dissipative Metamaterials Via Hamiltonian Perturbation Approach
,”
Nonlinear Dyn.
,
108
(
2
), pp.
765
787
.10.1007/s11071-022-07199-8
20.
Fortunati
,
A.
,
Arena
,
A.
,
Lepidi
,
M.
,
Bacigalupo
,
A.
, and
Lacarbonara
,
W.
,
2024
, “
Free Propagation of Resonant Waves in Nonlinear Dissipative Metamaterials
,”
Proc. R. Soc. A
,
480
(
2287
), p.
20230759
.10.1098/rspa.2023.0759
21.
Porter
,
M. A.
,
Kevrekidis
,
P. G.
, and
Daraio
,
C.
,
2015
, “
Granular Crystals: Nonlinear Dynamics Meets Materials Engineering
,”
Phys. Today
,
68
(
11
), pp.
44
50
.10.1063/PT.3.2981
22.
Kim
,
E.
, and
Yang
,
J.
,
2019
, “
Review: Wave Propagation in Granular Metamaterials
,”
Funct. Compos. Struct.
,
1
(
1
), p.
012002
.10.1088/2631-6331/ab0c7e
23.
Lydon
,
J.
,
Jayaprakash
,
K.
,
Ngo
,
D.
,
Starosvetsky
,
Y.
,
Vakakis
,
A. F.
, and
Daraio
,
C.
,
2013
, “
Frequency Bands of Strongly Nonlinear Homogeneous Granular Systems
,”
Phys. Rev. E
,
88
(
1
), p.
012206
.10.1103/PhysRevE.88.012206
24.
Zhang
,
Q.
,
Li
,
W.
,
Lambros
,
J.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2020
, “
Pulse Transmission and Acoustic Non-Reciprocity in a Granular Channel With Symmetry-Breaking Clearances
,”
Granular Matter
,
22
(
1
), pp.
1
16
.10.1007/s10035-019-0982-7
25.
Liu
,
L.
, and
Ma
,
P.
,
2022
, “
Review on the Performances and Applications of Mesh-Fabrics
,”
J. Ind. Text.
,
52
, pp.
1
28
.10.1177/15280837221136292
26.
Arena
,
A.
, and
Lepidi
,
M.
,
2025
, “
Nonlinear Wave Propagation in a Two-Dimensional Lattice Model of Textile Metamaterials
,”
Nonlinear Dyn.
, (epub).
27.
Nayfeh
,
A.
, and
Mook
,
D.
,
2008
,
Nonlinear Oscillations
(Physics Textbook),
Wiley
,
Hoboken, NJ
.
28.
Nayfeh
,
A. H.
,
2007
,
Perturbation Methods
,
Wiley-VCH Verlag GmbH
,
Hoboken, NJ
.
You do not currently have access to this content.